首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims, and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.  相似文献   

4.
Type I interferon (IFN) contributes significantly to innate immune responses to pathogen infections in macrophages. Our previous studies demonstrate that Ubp43, an ISG15-specific isopeptidase, is highly expressed in macrophages and noncatalytically inhibits Type I IFN signaling. To understand the effect of Type I IFN and Ubp43 in macrophage activation, we analyzed the expression of IFN-beta stimulated genes in wild-type and Ubp43(-/-) bone marrow derived macrophages (BMMs). Here, we show that Ubp43 regulates IFN-beta stimulated genes at genome level. IFN hypersensitivity of Ubp43(-/-) BMMs resulted in the identification of 749 unique genes that are upregulated by IFN-beta, including a large group of previously unidentified IFN-stimulated genes. Functional analyses of these genes showed that Type I IFN strongly induced the expression of a group of immune response related genes, including genes for antigen presentation, antiviral responses, and chemokine and cytokine production. These results provide excellent biochemical support for the high resistance of viral and bacterial infection of Ubp43 knockout mice, suggesting that Ubp43 is a potential therapeutic target for the enhancement of immune responses against infections.  相似文献   

5.
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection   总被引:15,自引:0,他引:15  
Innate immune responses provide the host with an early protection barrier against infectious agents, including viruses, and help shape the nature and quality of the subsequent adaptive immune responses of the host. Expression of ISG15 (UCRP), a ubiquitin-like protein, and protein ISGylation are highly increased upon viral infection. We have identified UBP43 (USP18) as an ISG15 deconjugating protease. Protein ISGylation is enhanced in cells deficient in UBP43 (ref. 6). Here we have examined the role of UBP43, encoded by the gene Usp18, in innate immunity to virus infection. Usp18(-/-) mice were resistant to the fatal lymphocytic choriomeningitis and myeloencephalitis that developed in wild-type mice after intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV), respectively. Survival of Usp18(-/-) mice after intracerebral LCMV infection correlated with a severe inhibition of LCMV RNA replication and antigen expression in the brain and increased levels of protein ISGylation. Consistent with these findings, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages from Usp18(-/-) mice showed restricted LCMV replication. Moreover, MEF from Usp18(-/-) mice showed enhanced interferon-mediated resistance to the cytopathic effect caused by VSV and Sindbis virus (SNV). This report provides the first direct evidence that the ISG15 protease UBP43 and possibly protein ISGylation have a role in innate immunity against viral infection.  相似文献   

6.
Reovirus infection of the murine spinal cord (SC) was used as a model system to investigate innate immune responses during viral myelitis, including the activation of glia (microglia and astrocytes) and interferon (IFN) signaling and increased expression of inflammatory mediators. Reovirus myelitis was associated with the pronounced activation of SC glia, as evidenced by characteristic changes in cellular morphology and increased expression of astrocyte and microglia-specific proteins. Expression of inflammatory mediators known to be released by activated glia, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), chemokine (C-C motif) ligand 5 (CCL 5), chemokine (C-X-C motif) ligand 10 (CXCL10), and gamma interferon (IFN-γ), was also significantly upregulated in the SC of reovirus-infected animals compared to mock-infected controls. Reovirus infection of the mouse SC was also associated with increased expression of genes involved in IFN signaling, including IFN-stimulated genes (ISG). Further, reovirus infection of mice deficient in the expression of the IFN-α/β receptor (IFNAR(-/-)) resulted in accelerated mortality, demonstrating that IFN signaling is protective during reovirus myelitis. Experiments performed in ex vivo SC slice cultures (SCSC) confirmed that resident SC cells contribute to the production of at least some of these inflammatory mediators and ISG during reovirus infection. Microglia, but not astrocytes, were still activated, and glia-associated inflammatory mediators were still produced in reovirus-infected INFAR(-/-) mice, demonstrating that IFN signaling is not absolutely required for these neuroinflammatory responses. Our results suggest that activated glia and inflammatory mediators contribute to a local microenvironment that is deleterious to neuronal survival.  相似文献   

7.
8.
Zhu J  Huang X  Yang Y 《Journal of virology》2007,81(7):3170-3180
Recombinant adenoviral vectors have been widely used for gene therapy applications and as vaccine vehicles for treating infectious diseases such as human immunodeficiency virus disease. The innate immune response to adenoviruses represents the most significant hurdle in clinical application of adenoviral vectors for gene therapy, but it is an attractive feature for vaccine development. How adenovirus activates innate immunity remains largely unknown. Here we showed that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells (pDCs) and non-pDCs such as conventional DCs and macrophages. The innate immune recognition of adenovirus by pDCs was mediated by Toll-like receptor 9 (TLR9) and was dependent on MyD88, whereas that by non-pDCs was TLR independent through cytosolic sensing of adenoviral DNA. Furthermore, type I IFNs were pivotal in innate and adaptive immune responses to adenovirus in vivo, and type I IFN blockade diminished immune responses, resulting in more stable transgene expression and reduction of inflammation. These findings indicate that adenovirus activates innate immunity by its DNA through TLR-dependent and -independent pathways in a cell type-specific fashion, and they highlight a critical role for type I IFNs in innate and adaptive immune responses to adenoviral vectors. Our results that suggest strategies to interfere with type I IFN pathway may improve the outcome of adenovirus-mediated gene therapy, whereas approaches to activate the type I IFN pathway may enhance vaccine potency.  相似文献   

9.
At least two distinct human dendritic cell (DC) subsets are produced in the bone marrow and circulate in the peripheral blood-precursor myeloid DCs (pre-mDCs) and plasmacytoid DCs (PDCs). Both lineages of DCs are instrumental in antiviral innate immunity and shaping Th1 adaptive immune responses. PDCs are the most potent IFN-alpha-producing cells to viral pathogens. Dengue, an acute flavivirus disease, provides a model to study DC responses to a self-limited human viral infection. We analyzed circulating DC subsets in a prospective study of children with dengue across a broad range of illness severities: healthy controls; mild, nondengue, presumed viral infections; moderately ill dengue fever; and, the most severe form of illness, dengue hemorrhagic fever. We also examined PDC responses in monkeys with asymptomatic dengue viremia and to dengue virus exposure in vitro. The absolute number and frequency of circulating pre-mDCs early in acute viral illness decreased as illness severity increased. Depressed pre-mDC blood levels appeared to be part of the typical innate immune response to acute viral infection. The frequency of circulating PDCs trended upward and the absolute number of circulating PDCs remained stable early in moderately ill children with dengue fever, mild other, nondengue, febrile illness, and monkeys with asymptomatic dengue viremia. However, there was an early decrease in circulating PDC levels in children who subsequently developed dengue hemorrhagic fever. A blunted blood PDC response to dengue virus infection was associated with higher viremia levels, and was part of an altered innate immune response and pathogenetic cascade leading to severe disease.  相似文献   

10.
In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)3-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.  相似文献   

11.
12.
HIV-associated neurologic disorders are a mounting problem despite the advent of highly active antiretroviral therapy. To address mechanisms of HIV-associated neurologic disorders, we used an SIV pigtailed macaque model to study innate immune responses in brain that suppress viral replication during acute infection. We previously reported that during acute infection in brain, noncanonical type I IFN signaling occurs, where IFN-β mRNA is induced while IFN-α is simultaneously suppressed. Two downstream IFN-stimulated genes, MxA and TRAIL, also show differential expression patterns. In this study, we show that differential signaling is due to interactions between macrophages and astrocytes. Astrocytes produce high levels of CCL2 upon SIV infection, which binds to CCR2 receptors on macrophages, leading to a selective suppression of IFN-α and the IFN-stimulated gene TRAIL while simultaneously inducing IFN-β and MxA. The interactions between chemokine and cytokine pathways are a novel finding that may specifically occur in the CNS.  相似文献   

13.
Degols G  Eldin P  Mechti N 《Biochimie》2007,89(6-7):831-835
The interferon (IFN) system is a major effector of the innate immunity that allows time for the subsequent establishment of an adaptive immune response against wide-range pathogens. The effectiveness of IFN to control initial infection requires the cooperation between several pathways induced in the target cells. Recent studies that highlight the implication of the 3'-5' exonuclease ISG20 (IFN Stimulated Gene product of 20 kDa) in the host's defenses against pathogens are summarised in this review.  相似文献   

14.
15.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   

16.
17.
Rickettsia conorii, an obligate intracellular bacterium and the causative agent of Mediterranean spotted fever, preferentially infects microvascular endothelial cells of the mammalian hosts leading to onset of innate immune responses, characterized by the activation of intracellular signaling mechanisms, release of pro-inflammatory cytokines and chemokines, and killing of intracellular rickettsiae. Our recent studies have shown that interferon (IFN)-β, a cytokine traditionally considered to be involved in antiviral immunity, plays an important role in the autocrine/paracrine regulation of host defense mechanisms and control of R. conorii growth in the host endothelial cells. Here, we show that R. conorii infection induces the expression of ISG15 (an interferon-stimulated gene coding a protein of 17kD) and UBP43 (an ISG15-specific protease) at the levels of mRNA and protein and report the evidence of ISGylation of as yet unidentified target proteins in cultured human microvascular endothelium. Infection-induced expression of ISG15 and UBP43 requires intracellular replication of rickettsiae and production of IFN-β, because treatment with tetracycline and presence of an antibody capable of neutralizing IFN-β activity resulted in near complete attenuation of both responses. Inhibition of R. conorii-induced ISG15 by RNA interference results in significant increase in the extent of rickettsial replication, whereas UBP43 knockdown yields a reciprocal inhibitory effect. In tandem, these results demonstrate the stimulation of interferon-β-mediated innate immune mechanisms capable of perturbing the growth and replication of pathogenic rickettsiae and provide first evidence for ISG15-mediated post-translational modification of host cellular proteins during infection with an intracellular bacterium.  相似文献   

18.
Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases,including localized mucocutaneous lesions,encephalitis,and disseminated diseases.HSV infection leads to rapid induction of innate immune responses.A critical part of this host response is the type I IFN system including the induction of type I IFNs,IFN-mediated signaling and amplification of IFN response.This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response.However,HSV has devised multiple strategies to evade and interfere with innate immunity.This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.  相似文献   

19.
Upon viral infection, the production of type I interferon (IFN) and the subsequent upregulation of IFN stimulated genes (ISGs) generate an antiviral state with an important role in the activation of innate and adaptive host immune responses. The ubiquitin-like protein (UBL) ISG15 is a critical IFN-induced antiviral molecule that protects against several viral infections, but the mechanism by which ISG15 exerts its antiviral function is not completely understood. Here, we report that ISG15 plays an important role in the regulation of macrophage responses. ISG15−/− macrophages display reduced activation, phagocytic capacity and programmed cell death activation in response to vaccinia virus (VACV) infection. Moreover, peritoneal macrophages from mice lacking ISG15 are neither able to phagocyte infected cells nor to block viral infection in co-culture experiments with VACV-infected murine embryonic fibroblast (MEFs). This phenotype is independent of cytokine production and secretion, but clearly correlates with impaired activation of the protein kinase AKT in ISG15 knock-out (KO) macrophages. Altogether, these results indicate an essential role of ISG15 in the cellular immune antiviral response and point out that a better understanding of the antiviral responses triggered by ISG15 may lead to the development of therapies against important human pathogens.  相似文献   

20.
The expression of ubiquitin-like modifier ISG15 and its conjugation to target proteins are highly induced by interferon (IFN) stimulation and during viral and bacterial infections. However, the biological significance of this modification has not been clearly understood. To investigate the function of protein modification by ISG15, we generated a mouse model deficient in UBE1L, an ISG15-activating enzyme. Ube1L-/- mice did not produce ISG15 conjugates but expressed free ISG15 normally. ISGylation has been implicated in the reproduction and innate immunity. However, Ube1L-/- mice were fertile and exhibited normal antiviral responses against vesicular stomatitis virus and lymphocytic choriomeningitis virus infection. Our results indicate that UBE1L and protein ISGylation are not critical for IFN-alpha/beta signaling via JAK/STAT activation. Moreover, using Ube1L/Ubp43 double-deficient mice, we showed that lack of UBP43, but not the increase of protein ISGylation, is related to the increased IFN signaling in Ubp43-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号