首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) plays a significant role in the prolongation of fibrinolysis. During fibrinolysis, plasminogen is activated to plasmin, which lyses a clot by cleaving fibrin after selected arginine and lysine residues. TAFIa attenuates fibrinolysis by removing the exposed C-terminal lysine residues. It was recently reported that TAFI zymogen possesses sufficient carboxypeptidase activity to attenuate fibrinolysis through a mechanism similar to TAFIa. Here, we show with a recently developed TAFIa assay that when thrombin is used to clot TAFI-deficient plasma supplemented with TAFI, there is some TAFI activation. The extent of activation was dependent upon the concentration of zymogen present in the plasma, and lysis times were prolonged by TAFIa in a concentration-dependent manner. Potato tuber carboxypeptidase inhibitor, an inhibitor of TAFIa but not TAFI, abolished the prolongation of lysis in TAFI-deficient plasma supplemented with TAFI zymogen. In addition, TAFIa but not TAFI catalyzed release of plasminogen bound to soluble fibrin degradation products. The data presented confirm that TAFI zymogen is effective in cleaving a small substrate but does not play a role in the attenuation of fibrinolysis because of its inability to cleave plasmin-modified fibrin degradation products.  相似文献   

2.

Background

Thrombus formation is a key step in the pathophysiology of acute ischemic stroke and results from the activation of the coagulation cascade. Thrombin plays a central role in this coagulation system and contributes to thrombus stability via activation of thrombin-activatable fibrinolysis inhibitor (TAFIa). TAFIa counteracts endogenous fibrinolysis at different stages and elevated TAFI levels are a risk factor for thrombotic events including ischemic stroke. Although substantial in vitro data on the influence of TAFI on the coagulation-fibrinolysis-system exist, investigations on the consequences of TAFI inhibition in animal models of cerebral ischemia are still lacking. In the present study we analyzed stroke development and post stroke functional outcome in TAFI-/- mice.

Methodology/Principal Findings

TAFI-/- mice and wild-type controls were subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 hours, functional outcome scores were assessed and infarct volumes were measured from 2,3,5-Triphenyltetrazoliumchloride (TTC)-stained brain slices. Hematoxylin and eosin (H&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Infarct volumes and functional outcomes did not significantly differ between TAFI-/- mice and controls (p>0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. TAFI deficiency also had no influence on intracerebral fibrin(ogen) formation after tMCAO.

Conclusion

Our study shows that TAFI does not play a major role for thrombus formation and neuronal degeneration after ischemic brain challenge.  相似文献   

3.
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a procarboxypeptidase found in plasma that is activated by thrombin, the thrombin-thrombomodulin complex, or plasmin. The active carboxypeptidase, TAFIa, attenuates fibrinolysis by removing newly exposed carboxy-terminal lysine residues on fibrin. The half-maximal effect of TAFIa on clot lysis occurs at 1 nM and the maximal effect occurs at 20 nM. Since the circulating concentration of the procarboxypeptidase is approximately 75 nM, only a small portion needs to be activated to have a significant effect on clot lysis. Several assays to measure total plasma TAFI levels and plasma TAFIa levels after it is fully activated exist. However, no currently available assay is sufficiently sensitive and specific to measure endogenous TAFIa in plasma. We have devised a new sensitive and specific assay for TAFIa in plasma that is based on physiologic function. This assay is based on the fact that TAFIa decreases the cofactor activity of high-molecular-weight fibrin degradation products in the stimulation of plasminogen cleavage in a concentration-dependent fashion. With this assay, we can measure TAFIa concentrations as low as 10 pM in plasma and it is not affected by variability in other hemostatic factors. This assay is reliable and repeatable with intra- and interassay variabilities of 6.5 and 6.1%, respectively.  相似文献   

4.
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.  相似文献   

5.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like zymogen that is activated to TAFIa by plasmin, thrombin, or the thrombin-thrombomodulin complex. The enzyme TAFIa attenuates clot lysis by removing lysine residues from a fibrin clot. Screening of nine human cDNA libraries indicated a common variation in TAFI at position 325 (Ile-325 or Thr-325). This is in addition to the variation at amino acid position 147 (Ala-147 or Thr-147) characterized previously. Thus, four variants of TAFI having either Ala or Thr at position 147 and either Thr or Ile at position 325 were stably expressed in baby hamster kidney cells and purified to homogeneity. The kinetics of activation of TAFI by thrombin/thrombomodulin were identical for all four variants; however, Ile at position 325 extended the half-life of TAFIa from 8 to 15 min at 37 degrees C, regardless of the residue at position 147. In clot lysis assays with thrombomodulin and the TAFI variants, or with pre-activated TAFI variants, the Ile-325 variants exhibited an antifibrinolytic effect that was 60% greater than the Thr-325 variants. Similarly, in the absence of thrombomodulin, the Ile-325 variants exhibited an antifibrinolytic effect that was 30-50% greater than the Thr-325 variants. In contrast, the variation at position 147 had little if any effect on the antifibrinolytic potential of TAFIa. The increased antifibrinolytic potential of the Ile-325-containing TAFI variants reflects the fact that these variants have an increased ability to mediate the release of lysine from partially degraded fibrin and suppress plasminogen activation. These findings imply that individuals homozygous for the Ile-325 variant of TAFI would likely have a longer lived and more potent TAFIa enzyme than those homozygous for the Thr-325 variant.  相似文献   

6.
Thrombomodulin (TM) is a cofactor for thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI) and thereby helps coordinate coagulation, anticoagulation, fibrinolysis, and inflammation. Platelet factor 4 (PF4), a platelet α-granule protein and a soluble cofactor for TM-dependent protein C activation, stimulates protein C activation in vitro and in vivo. In contrast to stimulation of protein C activation, PF4 is shown here to inhibit activation of TAFI by thrombin-TM. Consequences of inhibition of TAFI activation by PF4 included loss of TM-dependent prolongation of clot lysis times in hemophilia A plasma and loss of TM-stimulated conversion of bradykinin (BK) to des-Arg(9)-BK by TAFIa in normal plasma. Thus, PF4 modulates the substrate specificity of the thrombin-TM complex by selectively enhancing protein C activation while inhibiting TAFI activation, thereby preventing the generation of the antifibrinolytic and anti-inflammatory activities of TAFIa. To block the inhibitory effects of PF4 on TAFI activation, heparin derivatives were tested for their ability to retain high affinity binding to PF4 despite having greatly diminished anticoagulant activity. N-acetylated heparin (NAc-Hep) lacked detectable anticoagulant activity in activated partial thromboplastin time clotting assays but retained high affinity binding to PF4 and effectively reversed PF4 binding to immobilized TM. NAc-Hep permitted BK conversion to des-Arg(9)-BK by TAFIa in the presence of PF4. In a clot lysis assay on TM-expressing cells using hemophilia A plasma, NAc-Hep prevented PF4-mediated inhibition of TAFI activation and the antifibrinolytic functions of TAFIa. Accordingly, NAc-Hep or similar heparin derivatives might provide therapeutic benefits by diminishing bleeding complications in hemophilia A via restoration of TAFIa-mediated protection of clots against premature lysis.  相似文献   

7.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase B that can down-regulate fibrinolysis. TAFIa is a labile enzyme that can be inactivated by conformational instability or proteolysis. TAFI is approximately 40% identical to pancreatic carboxypeptidase B (CPB). In contrast to TAFIa, pancreatic CPB is a stable protease. We hypothesized that regions or residues that are not conserved in TAFIa compared with pancreatic CPB play a role in the conformational instability of TAFIa and that replacement of these non-conserved residues with residues of pancreatic CPB would lead to a TAFIa molecule with an increased stability. Therefore, we have expressed, purified, and characterized two TAFI-CPB chimeras: TAFI-CPB-(293-333) and TAFI-CPB-(293-401). TAFI-CPB-(293-333) could be activated by thrombin-thrombomodulin, but not as efficiently as wild-type TAFI. After activation, this mutant was unstable and was hardly able to prolong clot lysis of TAFI-deficient plasma. Binding of TAFI-CPB-(293-333) to both plasminogen and fibrinogen was normal compared with wild-type TAFI. TAFI-CPB-(293-401) could be activated by thrombin-thrombomodulin, although at a lower rate compared with wild-type TAFI. The activated mutant displayed a markedly prolonged half-life of 1.5 h. Plasmin could both activate and inactivate this chimera. Interestingly, this chimera did not bind to plasminogen or fibrinogen. TAFI-CPB-(293-401) could prolong the clot lysis time in TAFI-deficient plasma, although not as efficiently as wild-type TAFI. In conclusion, by replacing a region in TAFI with the corresponding region in pancreatic CPB, we were able to generate a TAFIa form with a highly stable activity.  相似文献   

8.
Thrombin-activatable fibrinolysis inhibitor (TAFI), also called procarboxypeptidase U (proCPU), is a plasma zymogen that can be activated by thrombin, the thrombin-thrombomodulin complex, or plasmin. The activated form of TAFI (TAFIa, CPU) removes C-terminal lysine residues of plasmin-modified fibrin (FN') that mediates a positive feedback mechanism in plasminogen (Pg) activation, thereby attenuating fibrinolysis. The plasma concentration of TAFI is approximately 75 nM. Because the half-maximal effect of TAFIa occurs at 1 nM, only approximately 1.3% of TAFI needs to be activated to exert an effect on clot lysis. The assay is performed by mixing soluble FN' covalently attached to a quencher and fluorescein-labeled Pg. The sample containing TAFIa is then added, and the rate of fluorescence increase due to removal of C-terminal lysine from FN' and loss of Pg binding is measured with a fluorescence plate reader. The assay was shown to be sensitive for TAFIa at a concentration as low as 12 pM. The intraassay variability and interassay variability of the assay were 6.3 and 8.3%, respectively. This assay was not confounded by the naturally occurring TAFI Thr325Leu polymorphism that affects the thermal stability of TAFIa or endogenous plasminogen in plasma.  相似文献   

9.

Background

EspP (E. coli secreted serine protease, large plasmid encoded) is an extracellular serine protease produced by enterohemorrhagic E. coli (EHEC) O157:H7, a causative agent of diarrhea-associated Hemolytic Uremic Syndrome (D+HUS). The mechanism by which EHEC induces D+HUS has not been fully elucidated.

Objectives

We investigated the effects of EspP on clot formation and lysis in human blood.

Methods

Human whole blood and plasma were incubated with EspPWT at various concentrations and sampled at various time points. Thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (aPTT), coagulation factor activities, and thrombelastgraphy (TEG) were measured.

Results and Conclusions

Human whole blood or plasma incubated with EspPWT was found to have prolonged PT, aPTT, and TT. Furthermore, human whole blood or plasma incubated with EspPWT had reduced activities of coagulation factors V, VII, VIII, and XII, as well as prothrombin. EspP did not alter the activities of coagulation factors IX, X, or XI. When analyzed by whole blood TEG, EspP decreased the maximum amplitude of the clot, and increased the clot lysis. Our results indicate that EspP alters hemostasis in vitro by decreasing the activities of coagulation factors V, VII, VIII, and XII, and of prothrombin, by reducing the clot strength and accelerating fibrinolysis, and provide further evidence of a functional role for this protease in the virulence of EHEC and the development of D+HUS.  相似文献   

10.
Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ϵ-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization.  相似文献   

11.

Background  

Determination of clot lysis times on whole blood, diluted whole blood, plasma or plasma fraction has been used for many years to assess the overall activity of the fibrinolytic system. We designed a completely computerised semi-automatic 8-channel device for measurement and determination of fibrin clot lysis. The lysis time is evaluated by a mathematical analysis of the lysis curve and the results are expressed in minute (range: 5 to 9999). We have used this new device for Euglobulin Clot Lysis Time (ECLT) determination, which is the most common test used in laboratories to estimate plasma fibrinolytic capacity.  相似文献   

12.

Background

Aspirin is a cornerstone in prevention of cardiovascular events and modulates both platelet aggregation and fibrin clot formation. Some patients experience cardiovascular events whilst on aspirin, often termed aspirin treatment failure (ATF). This study evaluated both platelet aggregation and fibrin clot structure in patients with ATF.

Methods

We included 177 stable coronary artery disease patients on aspirin monotherapy. Among these, 116 (66%) had ATF defined as myocardial infarction (MI) whilst on aspirin. Platelet aggregation was assessed by Multiplate® aggregometry and VerifyNow®, whereas turbidimetric assays and scanning electron microscopy were employed to study fibrin clot characteristics.

Results

Enhanced platelet aggregation was observed in patients with ATF compared with non-MI patients following stimulation with arachidonic acid 1.0 mM (median 161 (IQR 95; 222) vs. 97 (60; 1776) AU*min, p = 0.005) and collagen 1.0 µg/mL (293 (198; 427) vs. 220 (165; 370) AU*min, p = 0.03). Similarly, clot maximum absorbance, a measure of fibrin network density, was increased in patients with ATF (0.48 (0.41; 0.52) vs. 0.42 (0.38; 0.50), p = 0.02), and this was associated with thinner fibres (mean ± SD: 119.7±27.5 vs. 127.8±31.1 nm, p = 0.003) and prolonged lysis time (552 (498; 756) vs. 519 (468; 633) seconds; p = 0.02). Patients with ATF also had increased levels of C-reactive protein (CRP) (1.34 (0.48; 2.94) and 0.88 (0.32; 1.77) mg/L, p = 0.01) compared with the non-MI group. Clot maximum absorbance correlated with platelet aggregation (r = 0.31–0.35, p-values<0.001) and CRP levels (r = 0.60, p<0.001).

Conclusions

Patients with aspirin treatment failure showed increased platelet aggregation and altered clot structure with impaired fibrinolysis compared with stable CAD patients without previous MI. These findings suggest that an increased risk of aspirin treatment failure may be identified by measuring both platelet function and fibrin clot structure.  相似文献   

13.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

14.

Background

Altered fibrin clot architecture is increasingly associated with cardiovascular diseases; yet, little is known about how fibrin networks are affected by small molecules that alter fibrinogen structure. Based on previous evidence that S-nitrosoglutathione (GSNO) alters fibrinogen secondary structure and fibrin polymerization kinetics, we hypothesized that GSNO would alter fibrin microstructure.

Methodology/Principal Findings

Accordingly, we treated human platelet-poor plasma with GSNO (0.01–3.75 mM) and imaged thrombin induced fibrin networks using multiphoton microscopy. Using custom designed computer software, we analyzed fibrin microstructure for changes in structural features including fiber density, diameter, branch point density, crossing fibers and void area. We report for the first time that GSNO dose-dependently decreased fibrin density until complete network inhibition was achieved. At low dose GSNO, fiber diameter increased 25%, maintaining clot void volume at approximately 70%. However, at high dose GSNO, abnormal irregularly shaped fibrin clusters with high fluorescence intensity cores were detected and clot void volume increased dramatically. Notwithstanding fibrin clusters, the clot remained stable, as fiber branching was insensitive to GSNO and there was no evidence of fiber motion within the network. Moreover, at the highest GSNO dose tested, we observed for the first time, that GSNO induced formation of fibrin agglomerates.

Conclusions/Significance

Taken together, low dose GSNO modulated fibrin microstructure generating coarse fibrin networks with thicker fibers; however, higher doses of GSNO induced abnormal fibrin structures and fibrin agglomerates. Since GSNO maintained clot void volume, while altering fiber diameter it suggests that GSNO may modulate the remodeling or inhibition of fibrin networks over an optimal concentration range.  相似文献   

15.

Background

Sepsis induces early activation of coagulation and fibrinolysis followed by late fibrinolytic shutdown and progressive endothelial damage. The aim of the present study was to investigate and compare the functional hemostatic response in whole blood and plasma during experimental human endotoxemia by the platelet function analyzer, Multiplate and by standard and modified thrombelastography (TEG).

Methods

Prospective physiologic study of nine healthy male volunteers undergoing endotoxemia by means of a 4-hour infusion of E. coli lipopolysaccharide (LPS, 0.5 ng/kg/hour), with blood sampled at baseline and at 4 h and 6 h. Physiological and standard biochemical data and coagulation tests, TEG (whole blood: TEG, heparinase-TEG, Functional Fibrinogen; plasma: TEG±tissue-type plasminogen activator (tPA)) and Multiplate (TRAPtest, ADPtest, ASPItest, COLtest) were recorded. Mixed models with Tukey post hoc tests and correlations were applied.

Results

Endotoxemia induced acute SIRS with increased HR, temperature, WBC, CRP and procalcitonin and decreased blood pressure. It also induced a hemostatic response with platelet consumption and reduced APTT while INR increased (all p<0.05). Platelet aggregation decreased (all tests, p<0.05), whereas TEG whole blood clot firmness increased (G, p = 0.05). Furthermore, during endotoxemia (4 h), whole blood fibrinolysis increased (clot lysis time (CLT), p<0.001) and Functional Fibrinogen clot strength decreased (p = 0.049). After endotoxemia (6 h), whole blood fibrinolysis was reduced (CLT, p<0.05). In contrast to findings in whole blood, the plasma fibrin clot became progressively more resistant towards tPA-induced fibrinolysis at both 4 h and 6 h (p<0.001).

Conclusions

Endotoxemia induced a hemostatic response with reduced primary but enhanced secondary hemostasis, enhanced early fibrinolysis and fibrinogen consumption followed by downregulation of fibrinolysis, with a discrepant fibrinolytic response in plasma and whole blood. The finding that blood cells are critically involved in the vasculo-fibrinolytic response to acute inflammation is important given that disturbances in the vascular system contribute significantly to morbidity and mortality in critically ill patients.  相似文献   

16.
Activated thrombin activable fibrinolysis inhibitor (TAFIa), generated upon activation of TAFI, exerts an antifibrinolytic effect. TAFIa is a thermolabile enzyme, inactivated through a conformational change. The objective of the current study was to generate a stable variant of human TAFIa. Using a site-directed as well as a random mutagenesis approach to generate a library of TAFI mutants, we identified two mutations that increase TAFIa stability, i.e. a Ser305 to Cys and a Thr329 to Ile mutation, respectively. Combining these mutations in TAFI-Ala147-Ile325, the most stable isoform of TAFIa (half-life of 9.4 +/- 0.4 min), revealed a TAFIa half-life of 70 +/- 3.1 min (i.e. an 11-fold increase versus 6.3 +/- 0.3 min for TAFIa-Ala147-Thr325, the most frequently occurring isoform of TAFI in humans) at 37 degrees C. Moreover, clot lysis (induced by tissue plasminogen activator) experiments in which TAFI-Ala147-Cys305-Ile325-Ile329 was added to TAFI-depleted plasma revealed a 50% clot lysis time of 313 +/- 77 min (i.e. a 3.0-fold increase versus 117 +/- 10 min for TAFI-Ala147-Thr325). The availability of a more stable TAFIa variant will facilitate the search for inhibitors and allow further structural analysis to elucidate the mechanisms of the instability of TAFIa.  相似文献   

17.

Background

We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE).

Methods

Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405).

Results

Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT.

Conclusion

The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.  相似文献   

18.

Background

Elevated cardiac troponin I (cTnI) is frequently observed in patients with severe sepsis and septic shock. However, the mechanisms underlying cTnI release in these patients are still unknown. To date no data regarding coagulation disturbances as a possible mechanism for cTnI release during sepsis are available.

Methodology/Principal Findings

Consecutive patients with systemic inflammatory response syndrome (SIRS), sepsis or septic shock without evidence of an acute coronary syndrome were analyzed. Coagulation parameters (clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), α-angle) were assessed in native whole blood samples, and using specific activators to evaluate the extrinsic and intrinsic as well as the fibrin component of the coagulation pathway with the use of rotational thrombelastometry (ROTEM).Thirty-eight patients were included and 22 (58%) were cTnI-positive. Baseline characteristics between TnI-positive and -negative patients were similar. The CT, CFT, MCF and the α-angle were similar between the groups with trends towards shorter CT in the extrinsic and fibrin activation.

Conclusions/Significance

We found no differences in coagulation parameters analyzed with rotational thrombelastometry between cTnI-positive and -negative patients with SIRS, severe sepsis, and septic shock. These findings suggest that pathophysiological mechanisms other than thrombus-associated myocardial damage might play a major role, including reversible myocardial membrane leakage and/or cytokine mediated apoptosis in these patients.  相似文献   

19.
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.  相似文献   

20.
The plasma factor XIII (FXIII) is a transglutaminase which catalyzes the cross-linking of fibrin monomers during blood coagulation. S-nitrosylation of protein sulfhydryl groups has been shown to regulate protein function. Therefore, to establish whether nitric oxide (NO) affects the enzymatic activity of FXIII, we studied the effect of the NO-donorS-nitroso-N-acetylpenicillamine (SNAP) in a blood coagulation testin vitro. High concentrations of SNAP were found to have inhibitory effects on clot formation. Moreover, specific formation of γ-dimers through the action of FXIII is selectively inhibited by high concentrations of SNAP, as revealed by Western blot. Purified activated FXIII and plasma preparations were then exposed to NO-donor compounds and the enzyme activity was assayed by measuring the incorporation of [3H] putrescine into dimethylcasein. The NO donors, SNAP, spermine-NO (SPER-NO) and 3-morpholinosydnonimine (SIN-1), and the NO-carrier, S-nitrosoglutathione (GSNO), inhibited FXIII activity in a dose-dependent manner, in both purified enzyme and plasma preparations. Titration of -SH groups of FXIII with [14C] iodoacetamide has shown that the number of titratable cysteines per monomer of FXIII decreased from 1 (in absence of NO donors) to 0 (in the presence of NO donors). These results demonstrate that blood coagulation FXIII is a target for NO bothin vitroandin vivo,and that inhibition occurs by S-nitrosylation of a highly reactive cysteine residue. In conclusion, we show that inhibition of FXIII activity by NO may represent an additional regulatory mechanism for the formation of blood clot with physio-pathological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号