首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like zymogen that is activated to TAFIa by plasmin, thrombin, or the thrombin-thrombomodulin complex. The enzyme TAFIa attenuates clot lysis by removing lysine residues from a fibrin clot. Screening of nine human cDNA libraries indicated a common variation in TAFI at position 325 (Ile-325 or Thr-325). This is in addition to the variation at amino acid position 147 (Ala-147 or Thr-147) characterized previously. Thus, four variants of TAFI having either Ala or Thr at position 147 and either Thr or Ile at position 325 were stably expressed in baby hamster kidney cells and purified to homogeneity. The kinetics of activation of TAFI by thrombin/thrombomodulin were identical for all four variants; however, Ile at position 325 extended the half-life of TAFIa from 8 to 15 min at 37 degrees C, regardless of the residue at position 147. In clot lysis assays with thrombomodulin and the TAFI variants, or with pre-activated TAFI variants, the Ile-325 variants exhibited an antifibrinolytic effect that was 60% greater than the Thr-325 variants. Similarly, in the absence of thrombomodulin, the Ile-325 variants exhibited an antifibrinolytic effect that was 30-50% greater than the Thr-325 variants. In contrast, the variation at position 147 had little if any effect on the antifibrinolytic potential of TAFIa. The increased antifibrinolytic potential of the Ile-325-containing TAFI variants reflects the fact that these variants have an increased ability to mediate the release of lysine from partially degraded fibrin and suppress plasminogen activation. These findings imply that individuals homozygous for the Ile-325 variant of TAFI would likely have a longer lived and more potent TAFIa enzyme than those homozygous for the Thr-325 variant.  相似文献   

2.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) plays a significant role in the prolongation of fibrinolysis. During fibrinolysis, plasminogen is activated to plasmin, which lyses a clot by cleaving fibrin after selected arginine and lysine residues. TAFIa attenuates fibrinolysis by removing the exposed C-terminal lysine residues. It was recently reported that TAFI zymogen possesses sufficient carboxypeptidase activity to attenuate fibrinolysis through a mechanism similar to TAFIa. Here, we show with a recently developed TAFIa assay that when thrombin is used to clot TAFI-deficient plasma supplemented with TAFI, there is some TAFI activation. The extent of activation was dependent upon the concentration of zymogen present in the plasma, and lysis times were prolonged by TAFIa in a concentration-dependent manner. Potato tuber carboxypeptidase inhibitor, an inhibitor of TAFIa but not TAFI, abolished the prolongation of lysis in TAFI-deficient plasma supplemented with TAFI zymogen. In addition, TAFIa but not TAFI catalyzed release of plasminogen bound to soluble fibrin degradation products. The data presented confirm that TAFI zymogen is effective in cleaving a small substrate but does not play a role in the attenuation of fibrinolysis because of its inability to cleave plasmin-modified fibrin degradation products.  相似文献   

3.
Activated thrombin activable fibrinolysis inhibitor (TAFIa), generated upon activation of TAFI, exerts an antifibrinolytic effect. TAFIa is a thermolabile enzyme, inactivated through a conformational change. The objective of the current study was to generate a stable variant of human TAFIa. Using a site-directed as well as a random mutagenesis approach to generate a library of TAFI mutants, we identified two mutations that increase TAFIa stability, i.e. a Ser305 to Cys and a Thr329 to Ile mutation, respectively. Combining these mutations in TAFI-Ala147-Ile325, the most stable isoform of TAFIa (half-life of 9.4 +/- 0.4 min), revealed a TAFIa half-life of 70 +/- 3.1 min (i.e. an 11-fold increase versus 6.3 +/- 0.3 min for TAFIa-Ala147-Thr325, the most frequently occurring isoform of TAFI in humans) at 37 degrees C. Moreover, clot lysis (induced by tissue plasminogen activator) experiments in which TAFI-Ala147-Cys305-Ile325-Ile329 was added to TAFI-depleted plasma revealed a 50% clot lysis time of 313 +/- 77 min (i.e. a 3.0-fold increase versus 117 +/- 10 min for TAFI-Ala147-Thr325). The availability of a more stable TAFIa variant will facilitate the search for inhibitors and allow further structural analysis to elucidate the mechanisms of the instability of TAFIa.  相似文献   

4.
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a procarboxypeptidase found in plasma that is activated by thrombin, the thrombin-thrombomodulin complex, or plasmin. The active carboxypeptidase, TAFIa, attenuates fibrinolysis by removing newly exposed carboxy-terminal lysine residues on fibrin. The half-maximal effect of TAFIa on clot lysis occurs at 1 nM and the maximal effect occurs at 20 nM. Since the circulating concentration of the procarboxypeptidase is approximately 75 nM, only a small portion needs to be activated to have a significant effect on clot lysis. Several assays to measure total plasma TAFI levels and plasma TAFIa levels after it is fully activated exist. However, no currently available assay is sufficiently sensitive and specific to measure endogenous TAFIa in plasma. We have devised a new sensitive and specific assay for TAFIa in plasma that is based on physiologic function. This assay is based on the fact that TAFIa decreases the cofactor activity of high-molecular-weight fibrin degradation products in the stimulation of plasminogen cleavage in a concentration-dependent fashion. With this assay, we can measure TAFIa concentrations as low as 10 pM in plasma and it is not affected by variability in other hemostatic factors. This assay is reliable and repeatable with intra- and interassay variabilities of 6.5 and 6.1%, respectively.  相似文献   

5.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase B that can down-regulate fibrinolysis. TAFIa is a labile enzyme that can be inactivated by conformational instability or proteolysis. TAFI is approximately 40% identical to pancreatic carboxypeptidase B (CPB). In contrast to TAFIa, pancreatic CPB is a stable protease. We hypothesized that regions or residues that are not conserved in TAFIa compared with pancreatic CPB play a role in the conformational instability of TAFIa and that replacement of these non-conserved residues with residues of pancreatic CPB would lead to a TAFIa molecule with an increased stability. Therefore, we have expressed, purified, and characterized two TAFI-CPB chimeras: TAFI-CPB-(293-333) and TAFI-CPB-(293-401). TAFI-CPB-(293-333) could be activated by thrombin-thrombomodulin, but not as efficiently as wild-type TAFI. After activation, this mutant was unstable and was hardly able to prolong clot lysis of TAFI-deficient plasma. Binding of TAFI-CPB-(293-333) to both plasminogen and fibrinogen was normal compared with wild-type TAFI. TAFI-CPB-(293-401) could be activated by thrombin-thrombomodulin, although at a lower rate compared with wild-type TAFI. The activated mutant displayed a markedly prolonged half-life of 1.5 h. Plasmin could both activate and inactivate this chimera. Interestingly, this chimera did not bind to plasminogen or fibrinogen. TAFI-CPB-(293-401) could prolong the clot lysis time in TAFI-deficient plasma, although not as efficiently as wild-type TAFI. In conclusion, by replacing a region in TAFI with the corresponding region in pancreatic CPB, we were able to generate a TAFIa form with a highly stable activity.  相似文献   

6.
The accompanying paper (Nagashima, H. (2002) J. Biol. Chem. 277, 50439-50444) has demonstrated that argatroban can yield a stronger inhibitory effect on thrombin generation than DX-9065a during extrinsic pathway-stimulated human plasma coagulation, while these anticoagulant compounds have comparable abilities to prolong clot time. Since thrombin generation is known to be an important determinant for fibrinolytic resistance of clots formed during coagulation, the two compounds are compared by tissue plasminogen activator-induced clot lysis assays. The results demonstrated that, in the presence of thrombomodulin, argatroban dose dependently accelerated fibrinolysis of the clots, whereas DX-9065a did not. The activation of thrombin activatable fibrinolysis inhibitor (TAFI) determined in separate assays reflected the differential influence on thrombin generation by these compounds. Moreover, TAFI activation correlated closely with the fibrinolytic resistance observed during tissue plasminogen activator-induced clot lysis. This study demonstrates the differential effects of DX-9065a and argatroban on thrombin generation, which in turn results in a differential acceleration of fibrinolysis as well as TAFI activation in the clots formed under the influence of these compounds. The data implicate a possible difference in the antifibrinolytic properties of clots formed during treatment with these compounds.  相似文献   

7.
Mature thrombin-activable fibrinolysis inhibitor (TAFIa) is a highly unstable metallocarboxypeptidase that stabilizes blood clots by clipping C-terminal lysine residues from partially degraded fibrin. In accordance with its in vitro antifibrinolytic activity, animal studies have reported that inhibition of mature TAFI aids in the prevention of thrombosis. The level of TAFI activity is stringently regulated through (i) controlled proteolytic truncation of the zymogen (TAFI), generating the mature enzyme, TAFIa, and (ii) the short half-life of TAFIa. TAFI itself exhibits an intrinsic enzymatic activity, which is likely required to provide a baseline level of antifibrinolytic activity. The novel crystal structure presented here reveals that the active site of TAFI is accessible, providing the structural explanation for the its intrinsic activity. It also supports the notion that an "instability region" exists, in agreement with site-directed mutagenesis studies. Sulfate ions, bound to this region, point toward a potential heparin-binding site and could explain how heparin stabilizes TAFIa.  相似文献   

8.
Thrombin-activatable fibrinolysis inhibitor (TAFI), also called procarboxypeptidase U (proCPU), is a plasma zymogen that can be activated by thrombin, the thrombin-thrombomodulin complex, or plasmin. The activated form of TAFI (TAFIa, CPU) removes C-terminal lysine residues of plasmin-modified fibrin (FN') that mediates a positive feedback mechanism in plasminogen (Pg) activation, thereby attenuating fibrinolysis. The plasma concentration of TAFI is approximately 75 nM. Because the half-maximal effect of TAFIa occurs at 1 nM, only approximately 1.3% of TAFI needs to be activated to exert an effect on clot lysis. The assay is performed by mixing soluble FN' covalently attached to a quencher and fluorescein-labeled Pg. The sample containing TAFIa is then added, and the rate of fluorescence increase due to removal of C-terminal lysine from FN' and loss of Pg binding is measured with a fluorescence plate reader. The assay was shown to be sensitive for TAFIa at a concentration as low as 12 pM. The intraassay variability and interassay variability of the assay were 6.3 and 8.3%, respectively. This assay was not confounded by the naturally occurring TAFI Thr325Leu polymorphism that affects the thermal stability of TAFIa or endogenous plasminogen in plasma.  相似文献   

9.
The latent plasma carboxypeptidase thrombin-activable fibrinolysis inhibitor (TAFI) is activated by thrombin/thrombomodulin on the endothelial cell surface, and functions in dampening fibrinolysis. In this study, we examined the effect of activated TAFI (TAFIa) in modulating the proinflammatory functions of bradykinin, complement C5a, and thrombin-cleaved osteopontin. Hydrolysis of bradykinin and C5a and thrombin-cleaved osteopontin peptides by TAFIa was as efficient as that of plasmin-cleaved fibrin peptides, indicating that these are also good substrates for TAFIa. Plasma carboxypeptidase N, generally regarded as the physiological regulator of kinins, was much less efficient than TAFIa. TAFIa abrogated C5a-induced neutrophil activation in vitro. Jurkat cell adhesion to osteopontin was markedly enhanced by thrombin cleavage of osteopontin. This was abolished by TAFIa treatment due to the removal of the C-terminal Arg168 by TAFIa from the exposed SVVYGLR alpha 4 beta 1 integrin-binding site in thrombin-cleaved osteopontin. Thus, thrombin cleavage of osteopontin followed by TAFIa treatment may sequentially up- and down-modulate the pro-inflammatory properties of osteopontin. An engineered anticoagulant thrombin, E229K, was able to activate endogenous plasma TAFI in mice, and E229K thrombin infusion effectively blocked bradykinin-induced hypotension in wild-type, but not in TAFI-deficient, mice in vivo. Our data suggest that TAFIa may have a broad anti-inflammatory role, and its function is not restricted to fibrinolysis.  相似文献   

10.
Thrombin-activable fibrinolysis inhibitor (TAFI) is present in the circulation as an inactive zymogen. Thrombin converts TAFI to a carboxypeptidase B-like enzyme (TAFIa) by cleaving at Arg(92) in a process accelerated by the cofactor, thrombomodulin. TAFIa attenuates fibrinolysis. TAFIa can be inactivated by both proteolysis by thrombin and spontaneous temperature-dependent loss of activity. The identity of the thrombin cleavage site responsible for loss of TAFIa activity was suggested to be Arg(330), but site-directed mutagenesis of this residue did not prevent inactivation of TAFIa by thrombin. In this study we followed TAFI activation and TAFIa inactivation by thrombin/thrombomodulin in time and characterized the cleavage pattern of TAFI using matrix-assisted laser desorption ionization mass spectrometry. Mass matching of the fragments revealed that TAFIa was cleaved at Arg(302). Studies of a mutant R302Q-TAFI confirmed identification of this thrombin cleavage site and, furthermore, suggested that inactivation of TAFIa is based on its conformational instability rather than proteolytic cleavage at Arg(302).  相似文献   

11.

Background

Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis.

Methodology/Principal Findings

We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis.

Conclusions/Significance

We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.  相似文献   

12.
Marx PF  Dawson PE  Bouma BN  Meijers JC 《Biochemistry》2002,41(21):6688-6696
Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates the fibrin cofactor function of tissue-type plasminogen activator-mediated plasmin formation and subsequently fibrin degradation. In the present study, we focused on the role of plasmin in the regulation of TAFIa activity. Upon incubation with plasmin, TAFIa activity was generated, which was unstable at 37 degrees C. Analysis of the cleavage pattern showed that TAFI was cleaved at Arg(92), releasing the activation peptide from the 35.8-kDa catalytic domain. The presence of the 35.8-kDa fragment paralleled the time course of generation and loss of TAFIa activity. This suggested that, in the presence of plasmin, TAFIa is probably inactivated by proteolysis rather than by conformational instability. TAFI was also cleaved at Arg(302), Lys(327), and Arg(330), resulting in a approximately 44.3-kDa fragment and several smaller fragments. The 44.3-kDa fragment is no longer activatable since it lacks part of the catalytic center. We concluded that plasmin can cleave at several sites in TAFI and that this contributes to the regulation of TAFI and TAFIa.  相似文献   

13.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

14.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) is intrinsically unstable, a property that complicates the study of its role in regulating fibrinolysis. To investigate the effect of basic carboxypeptidases on fibrinolysis under conditions of constant carboxypeptidase activity, we employed pancreatic carboxypeptidase B (CPB), a homologous, stable basic carboxypeptidase, as a surrogate for TAFIa. Clots formed from TAFI-depleted plasma or from purified components were supplemented with tissue-type plasminogen activator and either CPB or TAFIa. The clot lysis data indicate that the down-regulation of fibrinolysis mediated by basic carboxypeptidases involves a threshold mechanism. At carboxypeptidase concentrations above the threshold, plasminogen activation is maintained in a fully down-regulated state; experiments in plasma showed that fibrinolysis is essentially halted by saturating concentrations of TAFIa and that fibrinolysis can be prolonged more than 45-fold by a stable carboxypeptidase. The threshold carboxypeptidase concentration was dependent on tissue-type plasminogen activator and antiplasmin concentrations, indicating that the threshold is determined by the steady-state plasmin concentration. Although obvious with CPB, the threshold was masked by the intrinsic instability of TAFIa and became apparent only when the effect of TAFIa was investigated over the picomolar concentration range. Because of the threshold effect and the instability of TAFIa, exponential increases in TAFIa concentration generate linear increases in lysis time. A model relating lysis time to TAFIa concentration, TAFIa half-life, and the threshold concentration of TAFIa is provided. The threshold effect has potentially important implications regarding the role of TAFIa and the regulation of clot lysis in vivo.  相似文献   

15.
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a metallocarboxypeptidase (MCP) that links blood coagulation and fibrinolysis. TAFI hampers fibrin-clot lysis and is a pharmacological target for the treatment of thrombotic conditions. TAFI is transformed through removal of its prodomain by thrombin-thrombomodulin into TAFIa, which is intrinsically unstable and has a short half-life in vivo. Here we show that purified bovine TAFI activated in the presence of a proteinaceous inhibitor renders a stable enzyme-inhibitor complex. Its crystal structure reveals that TAFIa conforms to the alpha/beta-hydrolase fold of MCPs and displays two unique flexible loops on the molecular surface, accounting for structural instability and susceptibility to proteolysis. In addition, point mutations reported to enhance protein stability in vivo are mainly located in the first loop and in another surface region, which is a potential heparin-binding site. The protein inhibitor contacts both the TAFIa active site and an exosite, thus contributing to high inhibitory efficiency.  相似文献   

16.
We have used site-directed mutagenesis and a recombinant expression system for thrombin-activable fibrinolysis inhibitor (TAFI) in order to identify the thrombin cleavage site in activated TAFI (TAFIa) and to determine the relative contribution of proteolytic cleavage and thermal instability in regulation of TAFIa activity in clots. Arg-330 of TAFIa had been proposed to be the thrombin cleavage site based on studies with trypsin, but mutation of this residue to Gln did not prevent thrombin-mediated cleavage nor did mutation to Gln of the nearby Arg-320 residue. However, mutation of Arg-302 to Gln abolished thrombin-mediated cleavage of TAFIa. All TAFIa variants were susceptible to plasmin cleavage. Interestingly, all Arg to Gln substitutions decreased the thermal stability of TAFIa. The antifibrinolytic potential of the TAFI mutants in vitro correlates with the thermal stability of their respective TAFIa species, indicating that this property plays a key role in regulating the activity if TAFIa. Incubation of TAFIa under conditions that result in complete thermal inactivation of the enzyme accelerates subsequent thrombin- and plasmin-mediated cleavage of TAFIa. Moreover, the extent of cleavage of TAFIa by thrombin does not affect the rate of decay of TAFIa activity. Collectively, these studies point to a role for the thermal instability, but not for proteolytic cleavage, of TAFIa in regulation of its activity and, thus, of its antifibrinolytic potential. Finally, we propose a model for the thermal instability of TAFIa.  相似文献   

17.
A collection of 56 purified thrombin mutants, in which 76 charged or polar surface residues on thrombin were mutated to alanine, was used to identify key residues mediating the interactions of thrombin with thrombomodulin (TM), protein C, and thrombin-activatable fibrinolysis inhibitor (TAFI). Comparison of protein C activation in the presence and absence of TM identified 11 residues mediating the thrombin-TM interaction (Lys(21), Gln(24), Arg(62), Lys(65), His(66), Arg(68), Thr(69), Tyr(71), Arg(73), Lys(77), Lys(106)). Three mutants (E25A, D51A, R89A/R93A/E94A) were found to have decreased ability to activate TAFI yet retained normal protein C activation, whereas three other mutants (R178A/R180A/D183A, E229A, R233A) had decreased ability to activate protein C but maintained normal TAFI activation. One mutant (W50A) displayed decreased activation of both substrates. Mapping of these functional residues on thrombin revealed that the 11 residues mediating the thrombin-TM interaction are all located in exosite I. Residues important in TAFI activation are located above the active-site cleft, whereas residues involved in protein C are located below the active-site cleft. In contrast to the extensive overlap of residues mediating TM binding and fibrinogen clotting, these data show that distinct domains in thrombin mediate its interactions with TM, protein C, and TAFI. These studies demonstrate that selective enzymatic properties of thrombin can be dissociated by site-directed mutagenesis.  相似文献   

18.
Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro   总被引:1,自引:0,他引:1  
Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethylmercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged, or had no effect on lysis in vitro. The inhibitor-induced effects were both tissue-type plasminogen activator (tPA) and TAFIa concentration-dependent. Inhibitor-dependent prolongation was favored at lower tPA concentrations. The magnitude of the prolongation increased with TAFIa concentration, and the maximal prolongation observed at each TAFIa concentration increased saturably with respect to TAFIa. A theoretical maximal prolongation of 20-fold was derived from a plot of the maximum prolongation versus TAFIa. This represents, for the first time, a measurement of the maximal antifibrinolytic potential of TAFIa in vitro. Because TAFIa spontaneously decays, the stabilization of TAFIa was investigated as a mechanism explaining the inhibitor-dependent prolongation of lysis. Both inhibitors stabilized TAFIa in a concentration-dependent, non-saturable manner. Although their KI values differed by three orders of magnitude, TAFIa was identically stabilized when the fraction of inhibitor-bound TAFIa was the same. The data fit a model whereby only free TAFIa decays. Therefore, the variable effects of competitive inhibitors of TAFIa on fibrinolysis can be rationalized in terms of free TAFIa and lysis time relative to the half-life of TAFIa.  相似文献   

19.
Bradykinin receptor subtypes linked to prostaglandin release have been assessed in a human osteosarcoma cell line with osteoblastic phenotype (MG-63). Bradykinin (BK; 1 micromol/l) caused a burst of prostaglandin E(2) release that was maximal at 10 min. When the effect on the burst of PGE(2) and PGI(2) release by a variety of kinins and kinin analogues was assessed, the following rank order of response was found: Lys-BK>BK> or =Met-Lys-BK>Ile-Ser-BK>[Tyr(8)]-BK> or =[Hyp(3)]-BK>des-Arg(9)-BK=des-Arg(10)-Lys-BK=des-Arg(1)-BK, [Thi(5,8),D-Phe(7)]-BK=Sar-[D-Phe(8)]-des-Arg(9)-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK. The rapid effect of BK on PGE(2) and PGI(2) release was unaffected by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140], but strongly inhibited by Hoe 140 in a concentration-dependent manner. When the incubation time was extended to 48 h, it was found that des-Arg(9)-BK and des-Arg(10)-Lys-BK caused a delayed enhancement of the formation of PGE(2). When PGE(2) formation was assessed in 24-h experiments, the following rank order of response was obtained: Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK>BK=Lys-BK>des-Arg(10)-Lys-BK>Sar[D-Phe(8)]-des-Arg(9)-BK>des-Arg(9)-BK. The stimulatory effect of BK at 24 h was unaffected by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140] but inhibited by Hoe 140. The stimulatory effect of des-Arg(10)-Lys-BK in 24-h experiments was inhibited by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140]. Similarly, the stimulatory effects of Sar[D-Phe(8)]-des-Arg(9)-BK and Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK was inhibited by des-Arg(10)-[Hoe 140].The following rank order of response was seen for inhibition of [3H]-BK binding to MG-63 cells: Lys-BK=BK=Hoe 140>des-Arg(10)-Hoe 140=des-Arg(10)-Lys-BK=des-Arg(9)-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK. Using [3H]-des-Arg(10)-Lys-BK, the following rank order of response for inhibition of binding was seen: des-Arg(10)-Lys-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK>des-Arg(10)-Hoe 140>des-Arg(9)-BK=Lys-BK=BK=Hoe 140. MG-63 cells expressed mRNAs for BK B1 and B2 receptors, as assessed by RT-PCR.These data indicate that the human osteoblastic osteosarcoma cell line MG-63 is equipped with functional BK receptors of both B1 and B2 receptor subtypes. The B2 receptors are linked to a burst of prostanoid release, whereas the B1 receptors mediate a delayed prostaglandin response, indicating that the two receptor subtypes are linked to different signal transducing mechanisms or that the molecular mechanisms involved in prostaglandin release are different.  相似文献   

20.
Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogene (procarboxypeptidase B) which can decrease fibrinolysis and thus act as a haemostatic factor. TAFI is now extensively studied in many complications as well as in physiological and complicated pregnancy. The question we posed in the present study was whether TAFI antigen is present in cord blood plasma. The study group consisted of 38 parturient women, 26 primiparous and 12 multiparous with normal course of pregnancy and delivery. The cord blood was sampled from the cord vein, and the mother's blood from the antecubital vein. 3.2% sodium citrate was used as an anticoagulant. TAFIa/ai antigen was measured by ELISA method. TAFIa/ai antigen was identified in all samples of cord blood plasma. Its level was 91.50 ng/ml (range: 71.76 - 160.77 ng/ml) vs. 55.46 ng/ml (range: 39.77 - 68.54 ng/ml ) in the mother's blood, which means that the level of TAFIa/ai antigen was significantly higher in fetal blood than in maternal blood (p<0.00001). TAFIa/ai antigen is an integral component of cord blood plasma. The concentration of TAFIa/ai antigen is about two times higher in fetal blood than in maternal blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号