首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
环糊精葡萄糖基转移酶(cyclodextrin glucosyltransferase,CGTase)是一种可催化淀粉或多糖中α-1,4键断裂并环化形成环糊精(cyclodextrins,CDs)的α-淀粉酶.CGTase在工业上主要用于制造环糊精,近年来利用其转糖基作用改造天然产物的性质取得了令人瞩目的研究进展,正成...  相似文献   

2.
通过多重序列比对和晶体结构分析发现,钙离子结合位点CaⅠ和CaⅡ普遍存在于环糊精葡萄糖基转移酶(CGT酶)中,且两个位点处氨基酸残基具有较高的保守性,而钙离子结合位点CaⅢ仅存在于少数CGT酶中.此外,研究发现,钙离子结合位点可能与CGT酶的环化活力、热稳定性和产物特异性密切相关.  相似文献   

3.
为了研究来源于碱性芽胞杆菌的γ-环糊精葡萄糖基转移酶(CGT酶)具有较高产物特异性的作用机理,对其氨基酸序列和模拟结构进行了分析,确定其亚位点7处氨基酸的缺失可能影响其产物特异性。运用重叠PCR的方法,在其亚位点7处添加缺失的6个氨基酸,造成插入突变。将突变基因与pET-20b(+)连接并在大肠杆菌BL21(DE3)中表达。以可溶性淀粉为底物进行酶转化,HPLC分析转化产物中的环糊精含量。结果表明,相对于野生型γ-CGT酶,突变酶转化生成的3种环糊精中,γ-环糊精所占的比例从76.0%降至12.5%,α-、β-环糊精分别从8.7%和15.2%提高至37.5%和50%。分析其可能机理为:与α-、β-CGT酶相比,野生型γ-CGT酶的亚位点7处缺失6个氨基酸,该构象为葡萄糖的结合提供了更大的空间,从而更适合γ-环糊精的生成;而在其亚位点7处插入6个氨基酸,造成插入突变后,葡萄糖链结合的空间变小,这种构象不利于γ-环糊精的生成。  相似文献   

4.
探讨α-环糊精糖基转移酶(CGT酶)活性区域-3亚位点(47位赖氨酸残基),-7亚位点(146~152位氨基酸残基)以及环化中心位点(195位酪氨酸残基)对其催化底物形成γ-环糊精(CD)能力的影响。将α-CGT酶相应位点分别进行如下突变:K47T,Y195I,以及146~152位氨基酸残基替换为异亮氨酸(命名为△6),并在大肠杆菌BL21中实现异源活性表达。以可溶性淀粉作为底物进行转化,利用HPLC分析各种突变酶的催化产物中3种环糊精产量和比例。结果表明,和野生酶相比,所有突变酶的淀粉水解活性和环糊精总生成量都有不同程度的下降。在产物的组成方面,突变酶Y195I的催化产物中,α-CD的含量由68%降为30%,β-CD由22.2%提高为33.3%;而γ-CD由8.9%提高为36.7%,含量提高了4倍,取代α-CD成为产物中的主要成分;γ-CD的实际产量为1.1 g/L,是野生酶(0.4 g/L)的3倍。突变酶K47T和△6的转化产物中α-CD比例有不同程度下降,但仍然是产物中的主要组分,β-和γ-CD的比例都有所增加。由此可见,活性区域中195位氨基酸对于α-CGT酶的活力和催化选择性具有重要的影响,Y195I突变体酶最有利于选择性形成γ-CD。纯化后突变酶Y195I的酶学性质试验表明,其最适反应温度和野生酶相同,但最适反应pH有所提高,且比野生酶具有更好的pH稳定性。因此,突变酶Y195I具有生产制备γ-CD的潜力。  相似文献   

5.
很多细菌可以产生环糊精葡基转移酶,对来源于嗜碱性芽孢杆菌N-227菌株染色体上一段编码β-环糊精葡基转移酶基因、包含有自己的启动子且能够直接在大肠杆菌中表达的DNA序列进行测序分析,该片断DNA包含有4114bp,从745位点到2883位点包含2139个碱基,为一个推定的编码713个氨基酸的蛋白质阅读框,和来源于Bacillus circulansA11的β-环糊精葡基转移酶氨基酸完全一致;具有环糊精葡基转移酶典型的五个结构域A-E,在A-B结构域中包含有七个属于α-淀粉酶家族的保守区域(I-VII)。对该酶基因进行PCR并克隆到表达载体pET28b上,利用乳糖进行诱导表达,获得了高效表达,环化活性为11.75mg/min/mL。这对于β-环糊精葡基转移酶的应用和降低成本具有重要的价值。  相似文献   

6.
两种环糊精对α-淀粉酶活性稳定作用的研究   总被引:1,自引:0,他引:1  
研究了β环糊精(βCD)、羟丙基β环糊精(HPβCD)对α淀粉酶活性的影响,结果表明βCD能明显稳定α淀粉酶活性,延长其储存时间(4℃)。而HPβCD能明显增加酶的荧光,说明其能更好地与芳香类氨基酸结合,但对酶的储存活性无明显延长作用。  相似文献   

7.
通过向重组α-环糊精葡萄糖基转移酶 (α-CGT酶) 液中添加化学添加剂以提高其热稳定性及贮存稳定性。在不同温度下研究了添加剂对酶液的贮存稳定性影响,并用圆二色谱 (CD) 研究了CGT酶在近紫外区和远紫外区蛋白质结构与热稳定性的变化关系。当单独加入各种添加剂在50 ℃水浴1 h和室温放置108 d后,发现含有20%甘油的酶液稳定性最好,与未加任何添加剂的对照酶液相比仍有91%和50%的酶活,对照酶液在50 ℃水浴1 h后仅有小于10%的活性,室温放置108 d后已经没有酶活。明胶、CaCl2和PEG40  相似文献   

8.
961546 α-淀粉酶族酶:相互转化和工业应用[会,英]/Imanaka, T.//Abstr.Pap.Am.Chem.Soc.-1995,209Meet.Pt.1.-BIOT 024[译自DBA,1995,14(22),95-13319] 大多数淀粉水解酶和相关酶只催化下述4种类型反应中的一种:α-(1,4)-葡糖苷键水解、α-(1,6)-葡糖苷键水解、转糖基作用形成α-(1,4)-葡糖苷键、及转糖基作用形成α-(1,6)-葡糖苷键。上述反应分别由α-淀粉酶、支链淀粉酶、环麦芽糊  相似文献   

9.
通过改造来源于软化类芽胞杆菌Paenibacillus macerans的环糊精糖基转移酶(Cyclodextrin glycosyltransferase,CGT酶)的+1亚位点提高其对麦芽糊精的底物特异性,并进一步提高以麦芽糊精为糖基供体催化合成2-O-D-吡喃葡糖基-L-抗坏血酸(AA-2G)的效率。首先对+1亚位点附近的3个氨基酸残基Leu194、Ala230和His233分别进行定点饱和突变,得到3个优势突变体L194N(亮氨酸→天冬酰胺),A230D(丙氨酸→天冬氨酸),H233E(组氨酸→谷氨酸),然后以这3个优势突变体为模板进一步进行两点和三点复合突变,获得7个复合突变体。研究结果表明,突变体L194N/A230D/H233E以麦芽糊精为底物合成AA-2G的产量最高,达到1.95 g/L,比野生型CGT酶提高了62.5%。对获得的突变体进行动力学分析,发现高浓度的底物L-AA对突变型CGT酶催化的酶促反应具有抑制作用。确定了突变体酶促反应的最适温度、pH和反应时间。模拟突变体的三维结构并进行分析,突变体底物特异性的改善可能与CGT酶第194位、230位和233位的氨基酸残基的亲水性及与底物分子间的作用力的改变有关。  相似文献   

10.
【背景】环糊精糖基转移酶的分子动力学模拟较传统基因改造而言能有效提高改造效率,减少盲目性。【目的】探究环糊精糖基转移酶的催化专一性机理,为获得产γ-环糊精专一性更高的环糊精糖基转移酶提供高效突变菌株方法。【方法】通过分子对接和分子动力学模拟,获得3种产物类型CGTase与底物的对接模拟结构,并通过定点突变实验进行验证。【结果】分子动力学模拟结果显示α-和β-CGTase与十糖链在酶蛋白S1区域呈现闭合的形态,而γ-CGTase和十糖链在S1区域呈现更易于生成γ-环糊精的张开形态;3种CGTase与十糖链在相同位置存在氢键的氨基酸共有17个相对应位点,其中14个位点的氨基酸种类一致,不一致的3个氨基酸对应α-CGTase位点分别为Y89、D234和Y262。本研究对Y262位点进行定点突变和产物专一性实验,结果显示经过分子动力学预测的Y262L有助于提高产γ-CD专一性,从野生酶的13.7%提高到39.9%,γ-环糊精产物比例提高了3倍。【结论】分子动力学模拟结果对于指导环糊精糖基转移酶的专一性内在机理具有一定的正向指导意义。  相似文献   

11.
Cyclodextrin glycosyltransferase (CGTase) catalyzes three transglycosylation reactions via a double displacement mechanism involving a covalent enzyme-intermediate complex (substituted-enzyme intermediate). Characterization of the three transglycosylation reactions, however, revealed that they differ in their kinetic mechanisms. Disproportionation (cleavage of an alpha-glycosidic bond of a linear malto-oligosaccharide and transfer of one part to an acceptor substrate) proceeds according to a ping-pong mechanism. Cyclization (cleavage of an alpha-glycosidic bond in amylose or starch and subsequent formation of a cyclodextrin) is a single-substrate reaction with an affinity for the high molecular mass substrate used, which was too high to allow elucidation of the kinetic mechanism. Michaelis-Menten kinetics, however, have been observed using shorter amylose chains. Coupling (cleavage of an alpha-glycosidic bond in a cyclodextrin ring and transfer of the resulting linear malto-oligosaccharide to an acceptor substrate) proceeds according to a random ternary complex mechanism. In view of the different kinetic mechanisms observed for the various reactions, which can be related to differences in substrate binding, it should be possible to mutagenize CGTase in such a manner that a single reaction is affected most strongly. Construction of CGTase mutants that synthesize linear oligosaccharides instead of cyclodextrins thus appears feasible. Furthermore, the rate of interconversion of linear and circular conformations of oligosaccharides in the cyclization and coupling reactions was found to determine the reaction rate. In the cyclization reaction this conversion rate, together with initial binding of the high molecular mass substrate, may determine the product specificity of the enzyme. These new insights will allow rational design of CGTase mutant enzymes synthesizing cyclodextrins of specific sizes.  相似文献   

12.
Cyclodextrin glycosyltransferase (CGTase) uses an alpha-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg.L(-1) culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction). Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme-substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.  相似文献   

13.
The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transglycosylation activity and is able to form cyclodextrins. We have determined the 2.0 and 2.5 A X-ray structures of E257A/D229A CGTase in complex with maltoheptaose and maltohexaose. Both sugars are bound at the donor subsites of the active site and the acceptor subsites are empty. These structures mimic a reaction stage in which a covalent enzyme-sugar intermediate awaits binding of an acceptor molecule. Comparison of these structures with CGTase-substrate and CGTase-product complexes reveals three different conformational states for the CGTase active site that are characterized by different orientations of the centrally located residue Tyr 195. In the maltoheptaose and maltohexaose-complexed conformation, CGTase hinders binding of an acceptor sugar at subsite +1, which suggests an induced-fit mechanism that could explain the transglycosylation activity of CGTase. In addition, the maltoheptaose and maltohexaose complexes give insight into the cyclodextrin size specificity of CGTases, since they precede alpha-cyclodextrin (six glucoses) and beta-cyclodextrin (seven glucoses) formation, respectively. Both ligands show conformational differences at specific sugar binding subsites, suggesting that these determine cyclodextrin product size specificity, which is confirmed by site-directed mutagenesis experiments.  相似文献   

14.
Cyclodextrin glycosyltransferases (CGTase) (EC 2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans strain 251 revealed sugar binding subsites, distant from the catalytic residues, which have been proposed to be involved in the cyclodextrin size specificity of these enzymes. To probe the importance of these distant substrate binding subsites for the alpha, beta, and gamma-cyclodextrin product ratios of the various CGTases, we have constructed three single and one double mutant, Y89G, Y89D, S146P and Y89D/S146P, using site-directed mutagenesis. The mutations affected the cyclization, coupling; disproportionation and hydrolyzing reactions of the enzyme. The double mutant Y89D/S146P showed a twofold increase in the production of alpha-cyclodextrin from starch. This mutant protein was crystallized and its X-ray structure, in a complex with a maltohexaose inhibitor, was determined at 2.4 A resolution. The bound maltohexaose molecule displayed a binding different from the maltononaose inhibitor, allowing rationalization of the observed change in product specificity. Hydrogen bonds (S146) and hydrophobic contacts (Y89) appear to contribute strongly to the size of cyclodextrin products formed and thus to CGTase product specificity. Changes in sugar binding subsites -3 and -7 thus result in mutant proteins with changed cyclodextrin production specificity.  相似文献   

15.
Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have identified Arg47 in the Bacillus circulans strain 251 CGTase as an active-site residue interacting with cyclodextrins, but not with linear oligosaccharides. Arg47 thus may specifically affect CGTase reactions with cyclic substrates or products. Here we show that mutations in Arg47 (to Leu or Gln) indeed have a negative effect on the cyclization and coupling activities; Arg47 specifically stabilizes the oligosaccharide chain in the transition state for these reactions. As a result, the mutant proteins display a shift in product specificity towards formation of larger cyclodextrins. As expected, both mutants also showed lower affinities for cyclodextrins in the coupling reaction, and a reduced competitive (product) inhibition of the disproportionation reaction by cyclodextrins. Both mutants also provide valuable information about the processes taking place during cyclodextrin production assays. Mutant Arg47-->Leu displayed an increased hydrolyzing activity, causing accumulation of increasing amounts of short oligosaccharides in the reaction mixture, which resulted in lower final amounts of cyclodextrins produced from starch. Interestingly, mutant Arg47-->Gln displayed an increased ratio of cyclization/coupling and a decreased hydrolyzing activity. Due to the decreased coupling activity, which especially affects the production of larger cyclodextrins, this CGTase variant produced the various cyclodextrins in a stable ratio in time. This feature is very promising for the industrial application of CGTase enzymes with improved product specificity.  相似文献   

16.
Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic alpha-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop forming acceptor subsite +3 had a different conformation, providing the G2-amylase with more space at acceptor subsite +3, and (ii) the G2-amylase contained a five-residue amino acid insertion that hampers substrate binding at the donor subsites -3/-4 (Biochemistry, 38 (1999) 8385). In an attempt to change CGTase into an enzyme with the reaction and product specificity of the G2-amylase, which is used in the bakery industry, these differences were introduced into Thermoanerobacterium thermosulfurigenes CGTase. The loop forming acceptor subsite +3 was exchanged, which strongly reduced the cyclization activity, however, the product specificity was hardly altered. The five-residue insertion at the donor subsites drastically decreased the cyclization activity of CGTase to the extent that hydrolysis had become the main activity of enzyme. Moreover, this mutant produces linear products of variable sizes with a preference for maltose and had a strongly increased exo-specificity. Thus, CGTase can be changed into a starch hydrolase with a high exo-specificity by hampering substrate binding at the remote donor substrate binding subsites.  相似文献   

17.
Cyclodextrin glycosyltransferase (EC 2.4.1.19, CGTase) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. Addition of small amounts (10% v/v) of polar organic solvents can affect both the overall production yield and the type of cyclodextrin produced from a maltodextrin substrate under simulated industrial process conditions. Using CGTase from Thermoanaerobacter sp. all solvents produced an increase in cyclodextrin yield when compared with a control, the greatest increase being obtained with addition of ethanol (26%). In addition product selectivity was affected by the nature of the organic solvent used: beta-cyclodextrin was favoured in the absence of any solvent and on the addition of dimethylsulphoxide, t-butanol and dimethylformanide while alpha-cyclodextrin was favoured by addition of acetonitrile, ethanol and tetrahydrofuran. With CGTase from Bacillus circulans strain 251 relatively smaller increases in overall cyclodextrin production were achieved (between 5-10%). Addition of t-butanol to a B. circulans catalysed reaction however did produce the largest selectivity for beta-cyclodextrin of any solvent-enzyme combination (82%). The effect of solvent addition was shown not to be related to the product inhibition of CGTase, but may be related to reduced competition from the intermolecular transglycosylation reaction that causes degradation of cyclodextrin products. This rate of this reaction was shown to be dependent on the nature of the organic solvent used.  相似文献   

18.
Bacterial cyclodextrin glucanotransferase   总被引:10,自引:0,他引:10  
Cyclodextrin glucanotransferase (CGTase, Ec 2.4.1.19) is an enzyme which catalyze intramolecular (cyclizing) and intermolecular (coupling, disproportionation) transglycosylation as well as having a hydrolytic action on starch and cyclodextrins. By a cyclizing reaction, the enzyme converts starch and related -1, 4-glucans to cyclodextrins which are widely utilized in food, pharmaceutical, and chemical industries. The present review attempts to summarize the reported data concerning the bacterial producers of CGTase, growth cultural conditions providing optimal enzyme biosynthesis in batches, repeated batch and continuous cultivation of free and immobilized cells, as well as some physicochemical and biochemical characteristics of the enzyme, CGTase immobilization, and enzyme structure.  相似文献   

19.
The stacking interaction between a tyrosine residue and the sugar ring at the catalytic subsite -1 is strictly conserved in the glycoside hydrolase family 13 enzymes. Replacing Tyr100 with leucine in cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. 1011 to prevent stacking significantly decreased all CGTase activities. The adjacent stacking interaction with both Phe183 and Phe259 onto the sugar ring at subsite +2 is essentially conserved among CGTases. F183L/F259L mutant CGTase affects donor substrate binding and/or acceptor binding during transglycosylation [Nakamura et al. (1994) Biochemistry 33, 9929-9936]. To elucidate the precise role of carbohydrate/aromatic stacking interaction at subsites -1 and +2 on the substrate binding of CGTases, we analyzed the X-ray structures of wild-type (2.0 A resolution), and Y100L (2.2 A resolution) and F183L/F259L mutant (1.9 A resolution) CGTases complexed with the inhibitor, acarbose. The refined structures revealed that acarbose molecules bound to the Y100L mutant moved from the active center toward the side chain of Tyr195, and the hydrogen bonding and hydrophobic interaction between acarbose and subsites significantly diminished. The position of pseudo-tetrasaccharide binding in the F183L/F259L mutant was closer to the non-reducing end, and the torsion angles of glycosidic linkages at subsites -1 to +1 on molecule 1 and subsites -2 to -1 on molecule 2 significantly changed compared with that of each molecule of wild-type-acarbose complex to adopt the structural change of subsite +2. These structural and biochemical data suggest that substrate binding in the active site of CGTase is critically affected by the carbohydrate/aromatic stacking interaction with Tyr100 at the catalytic subsite -1 and that this effect is likely a result of cooperation between Tyr100 and Phe259 through stacking interaction with substrate at subsite +2.  相似文献   

20.
Cyclodextrin-glycosyltransferase (CGTase) catalyzes the formation of alpha-, beta-, and gamma-cyclodextrins (cyclic alpha-(1,4)-linked oligosaccharides of 6, 7, or 8 glucose residues, respectively) from starch. Nine substrate binding subsites were observed in an x-ray structure of the CGTase from Bacillus circulans strain 251 complexed with a maltononaose substrate. Subsite -6 is conserved in CGTases, suggesting its importance for the reactions catalyzed by the enzyme. To investigate this in detail, we made six mutant CGTases (Y167F, G179L, G180L, N193G, N193L, and G179L/G180L). All subsite -6 mutants had decreased k(cat) values for beta-cyclodextrin formation, as well as for the disproportionation and coupling reactions, but not for hydrolysis. Especially G179L, G180L, and G179L/G180L affected the transglycosylation activities, most prominently for the coupling reactions. The results demonstrate that (i) subsite -6 is important for all three CGTase-catalyzed transglycosylation reactions, (ii) Gly-180 is conserved because of its importance for the circularization of the linear substrates, (iii) it is possible to independently change cyclization and coupling activities, and (iv) substrate interactions at subsite -6 activate the enzyme in catalysis via an induced-fit mechanism. This article provides for the first time definite biochemical evidence for such an induced-fit mechanism in the alpha-amylase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号