首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选取5个二倍体小麦种为实验材料,利用数码图像显微镜处理系统、气体交换参数测定系统和叶绿素荧光动力学参数测定系统,研究了二倍体小麦种间气孔特征与光合特性的差异.结果表明,二倍体小麦种间气孔和光合特征存在较大的差异:其中S基因型(Ae.Sect.Sitopsis)的气孔长度、周长和面积最大,而其宽度、密度和气孔指数却是最小的;D基因型(Ae.Tauschii)的气孔宽度、密度和气孔指数最大,而其长度、周长和面积却是最小的;D基因型(Ae.Tauschii)的净光合速率最大,而S基因型(Ae.Sect.Sitopsis)的净光合速率最小.气孔周长与气孔面积呈显著正相关关系,而气孔密度与气孔面积呈显著负相关关系.二倍体小麦的净光合速率与气孔导度呈显著正相关关系,同时气孔限制值的变化趋势与细胞间隙CO2浓度的变化趋势相反,说明二倍体小麦的光合能力主要受气孔限制.在几个种中,乌拉尔图小麦(T.urartu)具有较高的净光合速率和气孔导度,同时细胞间隙CO2浓度最低,气孔限制值最大,在光合能力和耐光抑制方面有较明显的优势;而野生一粒小麦(T.boeoticum)则在光合能力和耐光抑制方面不存在优势.同时,乌拉尔图小麦(T.urartu)的叶绿素含量最高,而野生一粒小麦(T.boeoticum)最低,叶绿素含量可能也是造成二倍体种间光合能力差异的原因之一.  相似文献   

2.
小麦进化过程中叶片气孔和光合特征演变趋势   总被引:5,自引:0,他引:5  
根据小麦属内种间的进化关系选取21种小麦品种为实验材料,研究了小麦进化过程中气孔特征和光合特征的演变趋势。结果表明,无论是A,B,D染色体组还是A,G染色体组,气孔长度、宽度、周长、面积均随倍性水平的升高而呈增大趋势,而气孔指数无显著变化;A,B,D染色体组气孔密度随倍性升高呈减少趋势。二倍体小麦的Pn值最高,六倍体小麦的Fv/Fm值较高,二倍体小麦叶片叶绿素含量显著高于四倍体和六倍体小麦。不同倍性小麦的净光合速率与气孔导度间均存在极显著相关关系,表明气孔传导力是小麦光合能力的主要限制因素之一。气孔导度与单一气孔特征之间无显著相关关系。A,B,D染色体组不同倍性小麦叶片气孔密度差异显著,其大小顺序为二倍体〉四倍体〉六倍体;A,B,D染色体组不同倍体小麦叶片的气孔长度、宽度、周长、面积差异显著,顺序均为六倍体〉四倍体〉二倍体,气孔密度降低可能是A,B,D染色体组六倍体小麦光合能力降低的原因。随着倍性的升高,小麦的抵抗光抑制能力越强,因此光化学能转换效率可能不是小麦进化过程中光合能力变化的原因。A,B,D染色体组中二倍体的叶绿素含量显著大于四倍体和六倍体,而A,G染色体组中倍体间叶绿素含量差异不显著,说明叶绿素的降低可能是A,B,D染色体组六倍体光合能力降低的原因之一。  相似文献   

3.
对普通小麦(TriticumaestivumL.)基因组(AABBDD)最可能的供体-T.uratrtuThum.(AA)、T.monoccumvar.boeoticum(Boiss.)MK(AA)、AegilopsspeltoidesTausch.和Ae.tauschii(Coss.(DD)的核糖体RNA基因ITS区进行了PCR扩增和克隆,并测定了ITS1和ITS2的DNA序列,讨论和纠正了前人  相似文献   

4.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

5.
Li M S  Wang C Y  Song J Q  Chi Y G  Wang X F  Wu Y F 《农业工程》2008,28(11):5385-5391
According to the evolutional relationships among wheat varieties, 21 wheat varieties were chosen as research materials in this experiment to determine the evolutional trends of stomatal and photosynthetic characteristics. The results showed that as ploidy increased, the stomatal length, width, perimeter and area were found to increase. The stomatal density was found to decrease in A, B, D genomes, while no differences were found in stomatal indices among ploidies, indicating that the stomata became larger, but were still less in evolution progress. The Diploidy had the highest Pn, which was less in Tetraploidy, and the least in Hexaploidy. On the contrary, the Hexaploidy had the highest value in Fv/Fm, and the Diploidy had the highest chlorophyll content. The net photosynthetic rate had significant correlation with stomatal conductivity, while no significant relationship was found between stomatal conductivity and any stomatal characteristics, indicating that the stomatal conductivity is one of the factors limiting the photosynthetic rate, while the single stomatal characteristics is not the reason inducing the change in photosynthetic rate. The stomatal density showed significant differences among ploidy materials in A, B, D genomes, and the trend of genotype was in order of 2n > 4n > 6n; the stomatal length, width, perimeter and area showed significant differences among ploidy materials, and the trend of genotype was in order of 6n > 4n > 2n. The results indicated that the low density might induce low conductivity and low photosynthetic ability in Hexaploidy. Furthermore, the Diploidy had higher value in chlorophyll content of flag leaf area among ploidy materials in A, B and D genomes, indicating that higher chlorophyll content might be the reason for higher photosynthetic ability in Diploid wheat species.  相似文献   

6.
The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.  相似文献   

7.
The 1TS1 and ITS2 of rDNA of four diploid species, newly Triticum urartu Thum. (AA), T. monococcum var. boeoticum (Boiss.) MK (AA),Aegilops speltoides Tausch. (BB) and Ae. taus&ii Coss. (DD), the most possible donors of A, B and D genomes to broad wheat ( T. aestivum), were amplified by PCR, cloned and sequenced. Some published sequences were discussed and rectified. The length of ITS1 sequences in four species was 221 to 223 bp, and that of 1TS2 was 216 to 217 bp. In pairwise sequence comparisons among four species, divergence ranged from 0.029 0 to 0.064 0 in ITS1, and from 0.009 3 to 0.058 0 in ITS2. Based on ITS1, ITS2 and 1TS1 + ITS2 data respectively, the same most parsimony tree that is congruent with the phylogenetic relationships was generated which was concordant with their morphological and cytological characteristics. In the trees, T. urartu and T. monococcum var. boeoticum constituted one monophyly, whereas two species of the genus Aegilops, Ac. speltoides and Ac. tauschii, fortmed another mono- phyly but with lower bootstrap value than the first clade. This study suggests that ITS region is a useful molecular marker in the studies on the origin and evolution of Triticum.  相似文献   

8.
小麦染色体组的起源与进化探讨   总被引:4,自引:0,他引:4  
陈庆富   《广西植物》1997,17(3):276-282
对小麦染色体组的起源及其进化进行了全面综述后,提出了一个新的小麦进化途径,并认为:(1)Triticummonococumvarurartu是多倍体小麦A组的原初供体,在A组进入多倍体小麦后有Tmonovarboeoticum的基因渗入;(2)B和G组的原初供体是Tspeltoides的S组,在该S组进入多倍体小麦后有两个进化方向,即S组结构分化形成G组和S组经外源染色体代换及重组等而进化成B组;(3)Tturgidum和Ttimophevi都是来自Tspeltoides为母本与Tmonovarurartu杂交后并双二倍化而形成的原初四倍体小麦(SSAA),并由它分别经遗传渗入和结构分化而成;(4)Tzhukovskyi是Ttimophevi作母本与Tmonovarboeoticum杂交并双二倍化而形成,故它具有分别来自Tmonovarurartu和Tmonovarboeoticum的两类A组;(5)Taestivum的D组来自Ttauschi;(6)无论A组、B组、D组、G组在进入多倍体小麦后均有相当分化,同时在其供体种中也有一定分化。  相似文献   

9.
Summary Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats.  相似文献   

10.
K Kerby  J Kuspira  B L Jones 《Génome》1988,30(4):576-581
To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the alpha 1 and alpha 2 forms coded for by genes in the B and D genomes, and is identical to the beta form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.  相似文献   

11.
By the example of three synthetic allopolyploids: Aegilops sharonensis x Ae. umbellulata (2n =28), Triticum urartu x Ae. tauschii (2n =28), T. dicoccoides x Ae. tauschii (2n =42) the 5S rDNA changes at the early stage of allopolyploidization were investigated. Using fluorescent in situ hybridization (FISH), the quantitative changes affecting the separate loci of one of the parental genomes were revealed in plants of S3 generation of each hybrid combination. Souther hybridization with genomic DNA of allopolyploid T. urartu x Ae. tauschii (TMU38 x TQ27) revealed lower intensity of the fragments from Ae. tauschii compared with the T. urartu fragments. It may be confirmation of the reduction of signal on 1D chromosome that was revealed in this hybrid using FISH. Both appearance of a new 5S rDNA fragments and full disappearance of fragments from parental species were not showed by Southern hybridization, as well as PCR-analysis of 5-15 plants of S2-S3 generations. The changes were not found under comparison of primary structure of nine 5S rDNA sequences of allopolyploid TMU38 x TQ27 with analogous sequences from parental species genomes. The observable similarity by FISH results of one of the studied synthetic allopolyploids with natural allopolyploid of similar genome composition indicates the early formation of unique for each allopolyploid 5S rDNA organization.  相似文献   

12.
以白皮改良蒜为试验材料,用不同浓度的一氧化氮气体(0.1、0.5、1.0 μmol·L-1)在无氧环境中对大蒜进行熏蒸。并使用TPS 1便携式光合仪结合Farquhar和Sharkey的理论测定或计算NO处理蒜苗的相关光合指标,同时测定核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)含量。发现与1.0 μmol·L-1 NO气体处理相比,0.5 μmol·L-1 NO处理的蒜苗叶片净光合速率(Pn)、气孔导度(Gs)提高、而胞间隙CO2浓度(Ci)、气孔限制值(Ls)降低,说明0.5 μmol·L-1 NO处理下蒜苗光合速率高于1.0 μmol·L-1 NO的处理的主要是非气孔因素。而且0.5 μmol·L-1 NO处理提高了蒜苗叶片表观量子效率(AQY)、表观羧化效率(CE)和光合能力(Ao)及Rubisco含量,说明外源NO处理提高了蒜苗叶片光合作用过程中光反应能力和碳同化过程中羧化酶羧化效率。与对照相比,1.0 μmol·L-1 NO处理降低了蒜苗叶片净光合速率,同时气孔导度、胞间隙CO2浓度、表观量子效率、Rubisco含量、羧化效率和光合能力均降低,而气孔限制值升高,说明1.0 μmol·L-1 NO对蒜苗光合作用的抑制既有气孔因素,也有非气孔因素。而0.1 μmol·L-1 NO处理各项指标与对照无显著性的差异。  相似文献   

13.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,132(3):209-213
The nucleotide sequences of the internal transcribed spacer (ITS) of nuclear ribosomal DNA in nine diploid species representing six sections of Aegilops were determined by direct sequencing of PCR-amplified DNA fragments. These sequences were aligned with two ITS sequences of additional species from Genbank. Sequence divergences were estimated using Kimura two-parameter model, and the phylogenetic analyses were performed using the maximum parsimony (MP) and the neighbor-joining (NJ) methods with PAUP and PHYLIP, respectively. The sequence divergences between the diploid species varied from 0.5% to 4.68%. The resulting MP tree and NJ tree showed relatively congruent phylogenetic relationships among these species, except Ae. caudata. Particularly, Ae. speltoides was basal within the two trees. The paraphyletic relationships between Ae. speltoides and two species of Sect. Sitopsis, and between Ae. uniaristata and two species of Sect. Comopyrum were supported strongly. The ITS data suggest that currently recognized sections within Aegilops should be reconsidered.  相似文献   

14.
选取已定位的大麦1H染色体的STS标记NWG913为引物,在普通小麦(Tritium aestivum L.)及其4个可能的起源种乌拉尔图小麦(T.urartu T.)、栽培一粒小麦(T.monococcum.L)栽培二粒小麦(T.dicoccum S.)、方穗山羊草(Ae.squarrosa L.)上特异性扩增。扩增产物克隆测序后对其进行序列分析,由序列差异的程度来确定这几个物种之间的亲缘关系。实验结果表明,普通小麦(Tritium aestivum L.)的A基因组此段序列与乌拉尔图小麦(T.urartu T.)、栽培一粒小麦(T.monococcum L.)、栽培二粒小麦(T.dicoccum S.)A基因组此段序列完全相同;普通小麦的D基因组此段序列与方穗山羊草(Ae.squarrosa L.)也完全相同;普通小麦的B基因组此段序列和栽培二粒小麦B基因组此段序列有0.61%的差异。研究结果一方面对现有的普通小麦A、B、D基因组起源和进化理论给予了分子水平上的证明,同时也揭示了同一物种不同的基因组化进化速度存在差异。  相似文献   

15.
不同小麦进化材料生育后期光合特性和产量   总被引:12,自引:0,他引:12       下载免费PDF全文
以二倍体野生一粒小麦(Triticum boeoticum)、栽培一粒小麦(T. monococcum)、节节麦(Aegilops tauschii)和黑麦(Secale cereale)、四倍体野生二粒小麦(T. dicoccoides)、栽培二粒小麦(T. dicoccum)、硬粒小麦(T. durum)、六倍体普通小麦(T. aestivum)‘扬麦9号’和‘扬麦158’及八倍体小黑麦(Triticale)为材料,采用盆栽试验研究了不同小麦进化材料生育后期旗叶光合特性的演变及产量的差异。结果表明,与六倍体普通小麦和八倍体小黑麦相比,二倍体和四倍体材料在开花前具有较高的光合速率(Pn)、气孔导度(Gs)、最大光能转换效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)。开花以后,二倍体和四倍体材料受非气孔因素的影响,光合能力下降较快;除黑麦外,旗叶光合速率在开花10 d后都低于普通小麦和小黑麦,胞间CO2浓度(Ci)迅速增加,Fv/FmΦPSⅡ和叶绿素含量快速下降。二倍体和四倍体材料开花前单株总叶面积和旗叶叶面积较大,花后下降迅速,功能期短;单株穗数也较多,但穗粒数、千粒重、产量和收获指数却显著低于普通小麦。因此,小麦长期进化过程中,普通小麦花后较高的光合能力及较长的光合持续期是提高千粒重,进而提高产量的重要生理基础。  相似文献   

16.
This study reports the molecular characterization, polymorphism, and phylogenetic relationships of Triticum aestivum , T. dicoccoides , T. urartu , and T. monococcum ssp. boeoticum , obtained from different locations in Anatolia, using 33 primer combinations to generate amplified fragment length polymorphism (AFLP) patterns in 31 individual plant samples. The objectives of this work were to estimate the phylogenetic relationships between these species and to investigate the genetic distance as a result of ecological and climatic factors. The origin of the A genome of polyploid wheats is also discussed. Eight hundred and seventy-five AFLP fragments had polymorphic loci, 133 of which were unique to T. monococcum ssp. boeoticum , 66 were unique to T. urartu , and 141 were unique to T. dicoccoides . Analysis using the program POPGENE showed polymorphism levels of T. monococcum ssp. boeoticum , T. urartu , and T. dicoccoides of 42.63, 32.34, and 27.71%, respectively. No correlation between genetic distance and ecological or climatic factors was recorded in this study. Our results support the hypothesis that T. urartu is a diploid ancestor of T. dicoccoides and T. aestivum .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 67–72.  相似文献   

17.
RFLP variation revealed by protein disulfide isomerase (PDI) coding gene sequences was assessed in 170 accessions belonging to 23 species of Triticum and Aegilops. PDI restriction fragments were highly conserved within each species and confirmed that plant PDI is encoded either by single-copy sequences or by small gene families. The wheat PDI probe hybridized to single EcoRI or HindIII fragments in different diploid species and to one or two fragments per genome in polyploids. Four Aegilops species in the Sitopsis section showed complex patterns and high levels of intraspecific variation, whereas Ae. searsii possessed single monomorphic fragments. T. urartu and Ae. squarrosa showed fragments with the same mobility as those in the A and D genomes of Triticum polyploid species, respectively, whereas differences were observed between the hybridization patterns of T. monococcum and T. boeoticum and that of the A genome. The single fragment detected in Ae. squarrosa was also conserved in most accessions of polyploid Aegilops species carrying the D genome. The five species of the Sitopsis section showed variation for the PDI hybridization fragments and differed from those of the B and G genomes of emmer and timopheevi groups of wheat, although one of the Ae. speltoides EcoRI fragments was similar to those located on the 4B and 4G chromosomes. The similarity between the EcoRI fragment located on the 1B chromosome of common and emmer wheats and one with a lower hybridization intensity in Ae. longissima, Ae. bicornis and Ae. sharonensis support the hypothesis of a polyphyletic origin of the B genome. Received: 25 June 1999 / Accepted: 14 September 1999  相似文献   

18.
Summary Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their parent nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do suggest that mitochondrial DNAs show larger evolutionary divergence than do the ctDNAs from these same strains.Contribution no. 507 from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan  相似文献   

19.
Triticum urartu, Aegilops speltoides and Ae. tauschii are respectively the immediate diploid sources, or their closest relatives, of the A, B and D genomes of polyploid wheats. Here we report the construction and characterization of arrayed large-insert libraries in a bacterial artificial chromosome (BAC) vector, one for each of these diploid species. The libraries are equivalent to 3.7, 5.4 and 4.1 of the T. urartu, Ae. speltoides, Ae. tauschii genomes, respectively. The predicted levels of genome coverage were confirmed by library hybridization with single-copy genes. The libraries were used to estimate the proportion of known repeated nucleotide sequences and gene content in each genome by BAC-end sequencing. Repeated sequence families previously detected in Triticeae accounted for 57, 61 and 57% of the T. urartu, Ae. speltoides and Ae. tauschii genomes, and coding regions accounted for 5.8, 4.5 and 4.8%, respectively.  相似文献   

20.
植物气孔导度的机理模型   总被引:12,自引:1,他引:11       下载免费PDF全文
Ball-Berry气孔导度模型及其修正模型是评价植物叶片气孔调节的重要工具。该文从CO2分子在叶片气孔中扩散这个最基本的物理过程出发, 应用物理学中的分子扩散和碰撞理论、流体力学与植物生理学等知识, 严格推导出叶片气孔导度的机理模型。利用美国Li-Cor公司生产的Li-6400光合作用测定仪控制CO2浓度、湿度和温度, 测量了华北平原冬小麦(Triticum aestivum)的光响应数据和气孔导度数据。拟合结果表明: 推导的气孔导度机理模型较之Ball-Berry气孔导度模型和Tuzet等气孔导度模型, 能更好地描述冬小麦的气孔导度与净光合速率之间的关系。如果用气孔导度的机理模型耦合光合作用对光响应的修正模型, 则耦合模型可以很好地描述华北平原冬小麦叶片气孔导度对光强的响应曲线, 并可直接估算冬小麦的最大气孔导度和对应的饱和光强, 同时可以研究最大气孔导度是否与最大净光合速率同步的问题。拟合结果还表明: 冬小麦在30 ℃、560 μmol·mol-1CO2, 或在32 ℃、370 μmol·mol-1CO2条件下, 最大气孔导度与最大净光合速率并不同步。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号