首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
小麦是世界上广泛种植的主要粮食作物,养活了全世界35%以上的人口。获取高质量的基因组图谱对于推动小麦基础理论和遗传育种研究至关重要。然而,庞大而复杂的基因组一度使小麦基因组测序被认为是"不可能完成的任务"。随着高通量测序和组装技术的成熟,近年来多个小麦基因组序列图谱陆续发布,序列组装质量日臻完善。仅最近两年就公布了5个不同倍性的小麦参考基因组序列,包括两个二倍体祖先种乌拉尔图小麦(Triticum urartu,AA)和粗山羊草(Aegilops tauschii,DD)、野生和栽培四倍体二粒小麦(T.turgidum ssp.dicoccoides, BBAA)和六倍体普通小麦(T. aestivum, BBAADD)。其中,作为多倍体小麦A亚基因组供体的乌拉尔图小麦基因组测序和分析是由中国科学院遗传与发育生物学研究所牵头完成。本文主要对小麦A基因组的结构解析和进化分析等方面的研究进展进行了综述,以期为相关领域的科研人员提供参考信息,促进小麦的基础和应用研究。  相似文献   

2.
方穗山羊草Rubisco活性及小亚基基因克隆和功能分析   总被引:1,自引:0,他引:1  
以方穗山羊草(Aegilops squarrosa L.)为母本,普通小麦(Triticum aestivum L.)为父本杂交,并以普通小麦为父本回交10代获得的核质杂种小麦为实验材料,测定了父母本及其核质杂种小麦rubisco的羧化活性和加氧活性。同时以方穗山羊草幼苗叶片为材料构建了库容量为5.5×10~5pfu的λgt10cDNA文库,并以水稻rbcS部分片段为探针筛选该cDNA文库,获得了方穗山羊草rbcS的cDNA克隆pRAS-1。核苷酸序列分析表明该cDNA全长815bp。比较以上三种材料中Rubisco活性和小亚基氨基酸的差异,推测小亚基上第56、84、98和117位氨基酸残基可能对酶的功能起着重要的作用。  相似文献   

3.
普通小麦(Triticum aestivum)是在生物进化过程中自然形成的异源六倍体,染色体数为2n=6x=42,包含了三个染色体组,即AA,BB,DD。关于各染色体组的来源问题已有许多研究,一般认为A组染色体来源于 T.monococcum(T.aegilopoides);D组染色体来源于 T.tauschii(Aegilops squarrosa)~[10],而B组染色体的来源问题,则意见并不一致。有人认为来源于 Aegilops speltoides~[10,13,12];有人认为来源于 Agropyron triticeum~[9];有人认为来源于 Ae.bicornis~[14];也有人认为来源于 T.urartu~[7]。七十年代以来,一些学者应用 Giemsa C-带技术来研究普通小麦B组染色体来源问题,但结果亦不一致。  相似文献   

4.
小麦tae-MIR156前体基因的克隆及其靶基因TaSPL17多态性分析   总被引:1,自引:0,他引:1  
刘霞  张斌  毛新国  李昂  孙美荣  景蕊莲 《遗传》2014,36(6):592-602
Squamosa-promoter binding protein (SBP)-box基因是植物特有的一类转录因子, 广泛参与植物生长发育, 其部分成员受miR156调控。文章克隆了小麦(Triticum aestivum) tae-MIR156前体基因, 转录后能够形成茎环结构。小麦10个SBP-box基因中, 仅TaSPL3和TaSPL17在编码区存在tae-miR156识别位点。SPL17在普通小麦的A基因组供体种乌拉尔图小麦(Triticum urartu, AA) UR209和B基因组供体种拟斯卑尔脱山羊草(Aegilops speltoides, BB) Y2001中均为多拷贝(SPL17-A1、SPL17-A2和SPL17-A3; SPL17-B1、SPL17-B2和SPL17-B3), 在D基因组供体种粗山羊草(Aegilops tauschii, DD) Ae38中仅检测到一种序列(SPL17-D); SPL17-A2与SPL17-B2, SPL17-A3与SPL17-B3、SPL17-D两两之间序列的一致性程度均大于99%, 且与普通小麦(中国春、衡观35和双丰收)的TaSPL17序列具有较高的一致性, 提示它们可能来源于共同的祖先基因, 并且在进化过程中高度保守。靶基因TaSPL17中的tae-miR156识别位点非常保守, 在根据单株穗数和基因型多样性挑选的SubP1和SubP2群体中均未检测到tae-miR156识别位点存在变异碱基。  相似文献   

5.
乌拉尔图小麦的遗传学研究进展   总被引:2,自引:0,他引:2  
乌拉尔图小麦(T.urartu)是四倍体小麦和普通小麦A基因组的供体,它在普通小麦的发育和进化中起着关键的作用。本文首先介绍了该物种的发现、形态特征和在分类学上的位置,然后从遗传多样性、它与小麦属内其它种的关系、构建基因组文库和1Ay高分子量麦谷蛋白亚基基因的研究等方面综述了乌拉尔图小麦的遗传学研究进展。为了加快普通小麦遗传学、发育和进化、新品种选育等方面的研究,本文建议今后应重点从挖掘优异基因、构建遗传图谱及分离探针和微卫星引物等方面对乌拉尔图小麦作进一步的研究。  相似文献   

6.
选取5个二倍体小麦种为实验材料,利用数码图像显微镜处理系统、气体交换参数测定系统和叶绿素荧光动力学参数测定系统,研究了二倍体小麦种间气孔特征与光合特性的差异.结果表明,二倍体小麦种间气孔和光合特征存在较大的差异:其中S基因型(Ae.Sect.Sitopsis)的气孔长度、周长和面积最大,而其宽度、密度和气孔指数却是最小的;D基因型(Ae.Tauschii)的气孔宽度、密度和气孔指数最大,而其长度、周长和面积却是最小的;D基因型(Ae.Tauschii)的净光合速率最大,而S基因型(Ae.Sect.Sitopsis)的净光合速率最小.气孔周长与气孔面积呈显著正相关关系,而气孔密度与气孔面积呈显著负相关关系.二倍体小麦的净光合速率与气孔导度呈显著正相关关系,同时气孔限制值的变化趋势与细胞间隙CO2浓度的变化趋势相反,说明二倍体小麦的光合能力主要受气孔限制.在几个种中,乌拉尔图小麦(T.urartu)具有较高的净光合速率和气孔导度,同时细胞间隙CO2浓度最低,气孔限制值最大,在光合能力和耐光抑制方面有较明显的优势;而野生一粒小麦(T.boeoticum)则在光合能力和耐光抑制方面不存在优势.同时,乌拉尔图小麦(T.urartu)的叶绿素含量最高,而野生一粒小麦(T.boeoticum)最低,叶绿素含量可能也是造成二倍体种间光合能力差异的原因之一.  相似文献   

7.
王林海  周敏  李慧玲  何中虎  夏先春 《遗传》2010,32(6):613-624
发掘小麦近缘种低分子量麦谷蛋白基因, 可为小麦品质改良提供更多的基因资源。文章利用Glu-B3位点特异性标记LB1F/LB1R、LB2F/LB2R、LB3F/LB3R和 LB4F/LB4R, 对普通小麦B染色体组的7个可能供体近缘种, 即硬粒小麦(T. durum)、栽培二粒小麦(T. dicoccum)、野生二粒小麦(T. dicoccoides)、拟斯卑尔脱山羊草(Ae. speltoides)、高大山羊草(Ae. longissima)、西尔斯山羊草(Ae. searsii)和双角山羊草(Ae. bicornis)共20份材料进行PCR扩增, 克隆小麦近缘种中GluB3-1、GluB3-2、GluB3-3和GluB3-4基因的等位变异, 并对Glu-B3位点基因进行系统发育分析。共获得16个新等位变异, 其中GluB3-1基因的新等位变异1个, 命名为GluB3-16, 其推导氨基酸分子量为39.2 kDa; GluB3-3的新等位变异有3个, 分别命名为GluB3-35、GluB3-36和GluB3-37, 其推导氨基酸分子量为44.5 kDa(GluB3-36)或44.6 kDa(GluB3-35和GluB3-37); GluB3-4的新等位变异12个, 分别命名为GluB3-46、GluB3-47、GluB3-48、GluB3-49、GluB3-410、GluB3-411、GluB3-412、GluB3-413、GluB3-414、GluB3-415、GluB3-416和GluB3-417, 其推导氨基酸分子量变化在38.6(GluB3-414)~ 42.5 kDa(GluB3-413)之间; 16个新等位变异都包含单一的完整开放阅读框, 具有低分子量麦谷蛋白亚基的典型结构。文章进一步拓展了低分子量麦谷蛋白基因资源, 揭示不同Glu-B3基因的进化过程不完全相同, 为有效地利用小麦近缘种材料和转基因育种提供了新的基因资源。  相似文献   

8.
山羊草属异源多倍体植物基因组进化的RAPD分析   总被引:5,自引:0,他引:5  
和24个随机引物对山羊草属(Aegilops L.)异源多倍体物种对其祖先二倍体物进行RAPD分析,对扩增出的313条带进行聚类分析发现,含D基因组的多倍体与二倍体祖先Ae.squarrosa(DD)在聚类图上聚为一支;除Ae.juvenalis(DDMMUU)聚到上一支外,含U基因组的多倍 与二倍体祖先Ae.umbellulata(UU)在聚类图上聚为另一支;多倍体与其他二倍体均不聚在一起,表明多倍体分别与Ae.squarrosa(DD)、Ae.umbellulata(UU)具有较近的亲缘关系,这说明多倍体开之后,D和U基因组变化较小,而其他基因组则发生了较大的变化。  相似文献   

9.
普通小麦三个基因组之间的遗传关系及原位杂交分析   总被引:1,自引:0,他引:1  
以普通小麦(Triticum aestivumL.)的3个可能的二倍体供体种(乌拉尔图小麦(T.urartuThum.)拟斯卑尔脱山羊草(AegilopsspeltoidesTausch)和粗山羊草(Ae.tauschiiCoss.)的基因组DNA为研究对象,通过它们之间的相互杂交,比较杂交强度以及泳道中带纹的不同,并结合部分DNA重复序列在基因组间含量差异的数据,得出结论:A^u和D基因组的关系  相似文献   

10.
大麦与小麦属间杂种的形态学和细胞遗传学研究   总被引:2,自引:1,他引:1  
通过幼胚培养技术分别获得了大麦(Hordeum vulgare L., 2n=2x=14)与普通小麦(Triticum aestivum L., 2n=6x=42)、硬粒小麦(T. durum d. sf., 2n=4x=28)以及栽培二粒小麦(T. dicoccum Schrank 2n=4x=28)之间的属间杂种,平均杂交结实率分别为3.0%、1.2%和0.8%。杂种在形态上偏向小麦,自交不孕,用父本作回交亲本获得了大麦×普通小麦杂种的回交一代。所有杂种均表现细胞学上的不稳定性。杂种减数分裂中期1 PMC染色体平均配对频率和交叉结频率分别为27.31Ⅰ 0.33Ⅱ 0.011Ⅲ,0.45;20.571 0.20Ⅱ 0.008Ⅲ,0.25和20.41Ⅰ 0.28Ⅱ 0.005Ⅲ,0.32,表明双亲染色体组间不存在同源关系。大麦×四倍体小麦杂种小孢子的染色体计数表明,杂种中未减数雄配子的频率在60%以上。  相似文献   

11.
K Kerby  J Kuspira  B L Jones 《Génome》1988,30(4):576-581
To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the alpha 1 and alpha 2 forms coded for by genes in the B and D genomes, and is identical to the beta form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.  相似文献   

12.
小麦染色体组的起源与进化探讨   总被引:4,自引:0,他引:4  
陈庆富   《广西植物》1997,17(3):276-282
对小麦染色体组的起源及其进化进行了全面综述后,提出了一个新的小麦进化途径,并认为:(1)Triticummonococumvarurartu是多倍体小麦A组的原初供体,在A组进入多倍体小麦后有Tmonovarboeoticum的基因渗入;(2)B和G组的原初供体是Tspeltoides的S组,在该S组进入多倍体小麦后有两个进化方向,即S组结构分化形成G组和S组经外源染色体代换及重组等而进化成B组;(3)Tturgidum和Ttimophevi都是来自Tspeltoides为母本与Tmonovarurartu杂交后并双二倍化而形成的原初四倍体小麦(SSAA),并由它分别经遗传渗入和结构分化而成;(4)Tzhukovskyi是Ttimophevi作母本与Tmonovarboeoticum杂交并双二倍化而形成,故它具有分别来自Tmonovarurartu和Tmonovarboeoticum的两类A组;(5)Taestivum的D组来自Ttauschi;(6)无论A组、B组、D组、G组在进入多倍体小麦后均有相当分化,同时在其供体种中也有一定分化。  相似文献   

13.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

14.
Common wheat ( Triticum aestivum L.) is an allohexaploid, consisting of three different genomes (Au, B and D ) which are genetically closely related. Genomic DNA of the three possible genome donors, T. urartu Thum., Aegilops speltoides Tausch and Ae. tauschii Coss.,were employed as probes to hybridize with the diploid genomic DNA digested by Eco RⅠand Hin dⅢ respectively. Both the hybridization strength and band patterns among the genomes would be good indicators of genome relationships. Combining distr ibution data of some repetitive DNA sequences cloned from T. urartu in the three genomes, the authors draw a conclusion that Au and D are more closely related to each other than either one to the B genome. Genomic in situ hybridization (GISH) of T. aestivum cv. Chinese Spring with genomic DNA probes of the three diploid progenitors respectively indicated that the three genomes could be discriminated clearly via GISH. The signals on the chromosomes of Au and D genomes were even. However, when Ae. speltoides DNA was used as probe, there were very strong cross hybridization and the signals condensed on some areas of the metaphasic chromosomes. In the interphase nucleus, the chromatin of B genome dispersed on the same region and the signals on the homologous chromosomes distributed symmetrically. Rich repetitive DNA sequences in B genome, especially the tandem repetitives, perhaps take an important role for the formation of the special hybridization pattern. The main difference between B and the other two genomes probably is in the repetitive DNA sequences.  相似文献   

15.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

16.
对普通小麦(TriticumaestivumL.)基因组(AABBDD)最可能的供体-T.uratrtuThum.(AA)、T.monoccumvar.boeoticum(Boiss.)MK(AA)、AegilopsspeltoidesTausch.和Ae.tauschii(Coss.(DD)的核糖体RNA基因ITS区进行了PCR扩增和克隆,并测定了ITS1和ITS2的DNA序列,讨论和纠正了前人  相似文献   

17.
A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci.  相似文献   

18.
The individuals of diploid wheat Triticum boeoticum, T. monococcum and T. sinskajae and goatgrass Aegilops squarrosa were picked out with screening the dense spike characteristics. The dense-spike accessions were discovered in diploid wheat (T. sinskajae) and Ae. squarrosa. Inheritance of the dense spike was studied. The trait was found to be controlled by a recessive gene in T. sinskajae and by an incomplete dominant gene in Ae. squarrosa. The dosage effect of dominant gene C was detected in interspecific pentaploid F1 hybrid plants T. compactum x T. palmovae (2n =35, A(u)A(b)BDD genome). The spike of pentaploid hybrid was not so dense as compared to hexaploid wheat T. compactum. This is the first report showing similarity of the expression of dominant gene C on D genome of the hexaploid wheat to that of dense spike gene in Ae. squarrosa. The existence of dense-spike accessions of Ae. squarrosa allows us to hypothesize that the origin of T. compactum is independent from that of common wheat.  相似文献   

19.
The 1TS1 and ITS2 of rDNA of four diploid species, newly Triticum urartu Thum. (AA), T. monococcum var. boeoticum (Boiss.) MK (AA),Aegilops speltoides Tausch. (BB) and Ae. taus&ii Coss. (DD), the most possible donors of A, B and D genomes to broad wheat ( T. aestivum), were amplified by PCR, cloned and sequenced. Some published sequences were discussed and rectified. The length of ITS1 sequences in four species was 221 to 223 bp, and that of 1TS2 was 216 to 217 bp. In pairwise sequence comparisons among four species, divergence ranged from 0.029 0 to 0.064 0 in ITS1, and from 0.009 3 to 0.058 0 in ITS2. Based on ITS1, ITS2 and 1TS1 + ITS2 data respectively, the same most parsimony tree that is congruent with the phylogenetic relationships was generated which was concordant with their morphological and cytological characteristics. In the trees, T. urartu and T. monococcum var. boeoticum constituted one monophyly, whereas two species of the genus Aegilops, Ac. speltoides and Ac. tauschii, fortmed another mono- phyly but with lower bootstrap value than the first clade. This study suggests that ITS region is a useful molecular marker in the studies on the origin and evolution of Triticum.  相似文献   

20.
Crude seed-protein extracts of wheat and wheat relatives were fractionated by electrophoresis on polyacrylamide gels. Homology of fractions in the resulting spectra was used as a criterion of genetic affinity among the species and among their genomes. The spectra of Triticum monococcum (AA), T. dicoccum (AABB) and T. aestivum (AABBDD) confirmed evidence from conventional methods that the A and B genomes are different, that the dicoccum A genome is only partially homologous with the monococcum genome, and that the affinity between T. dicoccum and T. aestivum involves the A and B genomes about equally. They also showed the monococcum genome to have more affinity with the aestivum A or both A and D, than with the dicoccum A genome. Protein homologies permitted discrimination of distant as well as close affinities: the spectra of T. monococcum (AA) and Secale cereale (EE) showed no homologous fractions (r = 0.05), while the spectra of T. dicoccum and T. durum (both AABB) showed 10 homologous and 5 sub-homologous fractions out of 15 (r = 0.92). Previous evidence that an amphiploid spectrum comprises essentially the sum of the fractions in its parental spectra was verified by the dissimilar spectra of T. aestivum (AABBDD) and S. cereale (EE) which accounted for all of the fractions of their amphiploid hybrid, Triticale (AABBDDEE). The effect of each parent upon the amphiploid spectrum was proportional to the number of genomes it contributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号