首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Payne CT  Zhang F  Lloyd AM 《Genetics》2000,156(3):1349-1362
Arabidopsis trichome development and differentiation is a well-studied model for plant cell-fate determination and morphogenesis. Mutations in TRANSPARENT TESTA GLABRA1 (TTG1) result in several pleiotropic defects including an almost complete lack of trichomes. The complex phenotype caused by ttg1 mutations is suppressed by ectopic expression of the maize anthocyanin regulator R. Here it is demonstrated that the Arabidopsis trichome development locus GLABRA3 (GL3) encodes an R homolog. GL3 and GLABRA1 (GL1) interact when overexpressed together in plants. Yeast two-hybrid assays indicate that GL3 participates in physical interactions with GL1, TTG1, and itself, but that GL1 and TTG1 do not interact. These data suggest a reiterated combinatorial model for the differential regulation of such diverse developmental pathways as trichome cell-fate determination, root hair spacing, and anthocyanin secondary metabolism.  相似文献   

4.
5.
6.
7.
8.
Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex.  相似文献   

9.
10.
The control of TT8 expression was investigated in this study, and it was demonstrated that it constitutes a major regulatory step in the specific activation of the expression of flavonoid structural genes. First, the GUS activity generated in planta from a TT8::uidA construct revealed cell-specific activation of the TT8 promoter consistent with the known involvement of the TT8 bHLH factor in proanthocyanidin, anthocyanin and mucilage biosynthesis. Moreover, the activity of this reporter construct was strongly affected in ttg1, TT2 overexpressers (OE), and PAP1-OE, suggesting interplay between TT2, PAP1, TTG1 and the activation of the TT8 promoter in planta. To further investigate the mechanisms involved, we used 35S::TT2-GR and 35S::TTG1-GR transgenic plants (expressing fusion proteins with the glucocorticoid receptor), as well as one-hybrid experiments, to determine the direct effect of these factors on TT8 expression. Interestingly, in vivo binding of TT2 and PAP1 to the TT8 promoter was dependent on the simultaneous expression of TT8 or the homologous bHLH factors GL3 and EGL3. Consistent with these results, the activity of the TT8::uidA reporter was strongly affected in the seed endothelium of a tt8 mutant. Similarly, a strong decrease in the level of TT8 mRNA was detected in the siliques of a gl3 x egl3 mutant and in plants that express a dominant negative form of the PAP1 protein, suggesting that TT8 expression is controlled by different combinations of MYB and bHLH factors in planta. The importance of this positive feedback mechanism in the strong and specific induction of proanthocyanidin biosynthesis in the seed coat of Arabidopsis thaliana is discussed.  相似文献   

11.
12.
13.
14.
Arabidopsis trichomes are branched, single-celled epidermal hairs. These specialized cells provide a convenient model for investigating the specification of cell fate in plants. Two key genes regulating the initiation of trichome development are GLABROUS1 (GL1) and TRANSPARENT TESTA GLABRA (TTG). GL1 is a member of the myb gene family. The maize R gene, which can functionally complement the Arabidopsis ttg mutation, encodes a basic helix-loop-helix protein. We used constitutively expressed copies of the GL1 and R genes to test hypotheses about the roles of GL1 and TTG in trichome development. The results support the hypothesis that TTG and GL1 cooperate at the same point in the trichome developmental pathway. Furthermore, the constitutive expression of both GL1 and R in the same plant caused trichomes to develop on all shoot epidermal surfaces. Results were also obtained indicating that TTG plays an additional role in inhibiting neighboring cells from becoming trichomes.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号