首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid β-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane–localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.  相似文献   

2.
Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components.  相似文献   

3.
Summary Mutant lines of Arabidopsis thaliana resistant to the artificial auxin 2,4-dichloro phenoxyacetic acid (2,4-D) were isolated by screening for growth of seedlings in the presence of toxic levels of 2,4-D. Genetic analysis of these resistant lines indicated that 2,4-D resistance is due to a recessive mutation at a locus we have designated Axr-1. Mutant seedlings were resistant to approximately 50-fold higher concentrations of 2,4-D than wild-type and were also resistant to 8-fold higher concentrations of indole-3-acetic acid (IAA) than wild-type. Labelling studies with (14C)2,4-D suggest that resistance was not due to changes in uptake or metabolism of 2,4-D. In addition to auxin resistance the mutants have a distinct morphological phenotype including alterations of the roots, leaves, and flowers. Genetic evidence indicates that both auxin resistance and the morphological changes are due to the same mutation. Because of the pleiotropic morphological effects of these mutations the Axr-1 gene may code for a function involved in auxin action in all tissues of the plant.  相似文献   

4.
5.
Gleason C  Foley RC  Singh KB 《PloS one》2011,6(3):e17245
Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5), only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA), with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.  相似文献   

6.
Summary Auxin (indole-3-acetic acid) is considered to be an important signalling molecule in the regulation of plant growth and development but neither auxin synthesis nor its mode of action is clearly understood. To identify genes involved in these processes, mutations were sought that altered the auxin requirement of plant tissues for growth. For the first time mutant plants were obtained that carry a recessive mutation at a single nuclear locus (auxl) which results in an absolute requirement for exogenous auxin for normal growth. In the absence of auxin treatment, mutant plants undergo premature senescence and die.Abbreviations BAP 6-benzylaminopurine - BUdR 5-bromodeoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - FUdR 5-fluorodeoxyuridine - IAA-EE indole-3-acetic acid ethyl ester - IMS indole-3-methanesulfonic acid  相似文献   

7.
Auxin controls numerous plant growth processes by directing cell division and expansion. Auxin-response mutants, including iba response5 (ibr5), exhibit a long root and decreased lateral root production in response to exogenous auxins. ibr5 also displays resistance to the phytohormone abscisic acid (ABA). We found that the sar3 suppressor of auxin resistant1 (axr1) mutant does not suppress ibr5 auxin-response defects, suggesting that screening for ibr5 suppressors might reveal new components important for phytohormone responsiveness. We identified two classes of Arabidopsis thaliana mutants that suppressed ibr5 resistance to indole-3-butyric acid (IBA): those with restored responses to both the auxin precursor IBA and the active auxin indole-3-acetic acid (IAA) and those with restored response to IBA but not IAA. Restored IAA sensitivity was accompanied by restored ABA responsiveness, whereas suppressors that remained IAA resistant also remained ABA resistant. Some suppressors restored sensitivity to both natural and synthetic auxins; others restored responsiveness only to auxin precursors. We used positional information to determine that one ibr5 suppressor carried a mutation in PLEIOTROPIC DRUG RESISTANCE9 (PDR9/ABCG37/At3g53480), which encodes an ATP-binding cassette transporter previously implicated in cellular efflux of the synthetic auxin 2,4-dichlorophenoxyacetic acid.  相似文献   

8.
9.
Dai Y  Wang H  Li B  Huang J  Liu X  Zhou Y  Mou Z  Li J 《The Plant cell》2006,18(2):308-320
Polar auxin transport (PAT) plays a crucial role in the regulation of many aspects of plant growth and development. We report the characterization of a semidominant Arabidopsis thaliana bushy and dwarf1 (bud1) mutant. Molecular genetic analysis indicated that the bud1 phenotype is a result of increased expression of Arabidopsis MAP KINASE KINASE7 (MKK7), a member of plant mitogen-activated protein kinase kinase group D. We showed that BUD1/MKK7 is a functional kinase and that the kinase activity is essential for its biological functions. Compared with the wild type, the bud1 plants develop significantly fewer lateral roots, simpler venation patterns, and a quicker and greater curvature in the gravitropism assay. In addition, the bud1 plants have shorter hypocotyls at high temperature (29 degrees C) under light, which is a characteristic feature of defective auxin action. Determination of tritium-labeled indole-3-acetic acid transport showed that the increased expression of MKK7 in bud1 or the repressed expression in MKK7 antisense transgenic plants causes deficiency or enhancement in auxin transport, indicating that MKK7 negatively regulates PAT. This conclusion was further substantiated by genetic and phenotypic analyses of double mutants generated from crosses between bud1 and the auxin-related mutants axr3-3, tir1-1, doc1-1, and atmdr1-1.  相似文献   

10.
The indole alkaloids brucine and yohimbine, just like hypaphorine, counteract indole-3-acetic acid (IAA) activity in seedling roots, root hairs and shoots, but do not appear to alter auxin transport in roots or in cultured cells. In roots, the interactions between IAA and these three alkaloids appear competitive and specific since these molecules interact with IAA but with neither 1-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D), two synthetic auxins. The data reported further support the hypothesis that hypaphorine brucine and yohimbine compete with IAA on some auxin-binding proteins likely to be auxin receptors and that 2,4-D and NAA are not always perceived by the same receptor as IAA or the same component of that receptor. At certain steps of plant development and in certain cells, endogenous indole alkaloids could be involved in IAA activity regulation together with other well-described mechanisms such as conjugation or degradation. Hypaphorine with other active indole alkaloids remaining to be identified, might be regarded as a new class of IAA antagonists.  相似文献   

11.
Glutathione S-transferases (GSTs; EC 2.5.1.18) have recently been proposed to form one large group among the auxin-induced proteins. However. the properties and regulation of such auxin-responsive GSTs in the plant still await detailed investigation. In this study, a 2,4-dichloro-phenoxyacetic acid (2,4-D)-inducible GST isozyme from soybean ( Glycine max [L.] Merr. cv. Williams) was purified to near homogeneity by anion-exchange and affinity chromatography on S-hexylglutathione agarose. The native enzyme had a molecular mass of 49 kDa, as determined by gel filtration, and consisted of 26-kDa subunits. The purified GST conjugated glutathione to 1-chloro-2,4-dinitrobenzene and to the herbicide metolachlor, but not to the other GST substrates atrazine. fluorodifen or trans-cinnamic acid. The N-termmal amino acid sequence shared significant homology with the deduced polypeptide sequences of two 2,4-D-inducible genes from tobacco, par A and CNT107 . The levels of the 26-kDa GST subunit protein in soybean hypocotyls were analysed by immunoblotting. At micromolar concentrations, 2,4-D induced a transient increase in net accumulation of GST, whereas indole-3-acetic acid or I-naphthaleneacetic acid did not increase the GST levels. Known inhibitors of polar auxin transport, including 2.3.5-tri-iodobenzoic acid. N-I-naphthylphthalamic acid and analogues thereof, differed widely in their ability to elicit GST protein accumulation. It is concluded that the induction of soybean GST by 2,4-D and by some of the auxin transport inhibitors is not related to auxin activity or to changes in the endogenous auxin levels.  相似文献   

12.
Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Several stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axr1-3) or ethylene (etr1-1) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles from independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans distal to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development.  相似文献   

13.
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.  相似文献   

14.
The pin-formed mutant pin 1-1, one of the Arabidopsis flower mutants, has several structural abnormalities in inflorescence axes, flowers, and leaves. In some cases, pin1-1 forms a flower with abnormal structure (wide petals, no stamens, pistil-like structure with no ovules in the ovary) at the top of inflorescence axes. In other cases, no floral buds are formed on the axes. An independently isolated allelic mutant (pin1-2) shows similar phenotypes. These mutant phenotypes are exactly the same in wild-type plants cultured in the presence of chemical compounds known as auxin polar transport inhibitors: 9-hydroxyfluorene-9-carboxylic acid or N-(1-naphthyl)phthalamic acid. We tested the polar transport activity of indole-3-acetic acid and the endogenous amount of free indole-3-acetic acid in the tissue of inflorescence axes of the pin1 mutants and wild type. The polar transport activity in the pin 1-1 mutant and in the pin1-2 mutant was decreased to 14% and 7% of wild type, respectively. These observations strongly suggest that the normal level of polar transport activity in the inflorescence axes is required in early developmental stages of floral bud formation in Arabidopsis and that the primary function of the pin1 gene is auxin polar transport in the inflorescence axis.  相似文献   

15.
Poupart J  Waddell CS 《Plant physiology》2000,124(4):1739-1751
The presence of indole-3-butyric acid (IBA) as an endogenous auxin in Arabidopsis has been recently demonstrated. However, the in vivo role of IBA remains to be elucidated. We present the characterization of a semi-dominant mutant that is affected in its response to IBA, but shows a wild-type response to indole-3-acetic acid (IAA), the predominant and most studied form of auxin. We have named this mutant rib1 for resistant to IBA. Root elongation assays show that rib1 is specifically resistant to IBA, to the synthetic auxin 2,4-dichlorophenoxyacetic acid, and to auxin transport inhibitors. rib1 does not display increased resistance to IAA, to the synthetic auxin naphthalene acetic acid, or to other classes of plant hormones. rib1 individuals also have other root specific phenotypes including a shortened primary root, an increased number of lateral roots, and a more variable response than wild type to a change in gravitational vector. Adult rib1 plants are morphologically indistinguishable from wild-type plants. These phenotypes suggest that rib1 alters IBA activity in the root, thereby affecting root development and response to environmental stimuli. We propose models in which RIB1 has a function in either IBA transport or response. Our experiments also suggest that IBA does not use the same mechanism to exit cells as does IAA and we propose a model for IBA transport.  相似文献   

16.
Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.  相似文献   

17.
The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.  相似文献   

18.
Zolman BK  Yoder A  Bartel B 《Genetics》2000,156(3):1323-1337
Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA.  相似文献   

19.
The somatic embryogenesis of conifers is a process susceptible to exogenous phytohormonal treatments. We report the effects of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the auxin inhibitor p-chlorophenoxyisobutyric acid (PCIB) on the endogenous level of the auxin indole-3-acetic acid (IAA) and on the anatomical composition of early somatic embryos of Abies alba (European silver fir). The embryogenic suspensor mass (ESM) of Abies alba proliferated on a medium supplemented by 2,4-D as well as on an auxin-free medium. The endogenous level of IAA was significantly higher in the ESM cultivated on a medium supplemented by 2,4-D. The decrease in the endogenous level of IAA in the first week of maturation is one of the most important stimuli responsible for the subsequent development of embryos. However, suppression of IAA synthesis by an auxin inhibitor did not stimulate the development of embryos. The maturation of somatic embryos from the globular to the cotyledonary stage occurs when the concentration of endogenous auxin in the ESM (including the embryos) increases. Early somatic embryos proliferating on a medium supplemented by auxin had an increased probability of maturing successfully. Exogenous auxin treatment during maturation did not compensate for the auxin deficiency during proliferation.  相似文献   

20.
Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - Vm maximum transport capacity of the carrier In honour of Professor Dieter Klämbt's 65th birthdayThe authors thank Drs. A.E. Geissler and G.F. Katekar (CSIRO, Canberra City, Australia) for providing auxin efflux carrier inhibitors CPD, CPP, and PBA, and Dr. H. Barbier-Brygoo (Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France) for helpful discussions. This work was supported by funds from the Centre National de la Recherche Scientifique (UPR0040).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号