首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of superficial wax on leaf wettability   总被引:6,自引:0,他引:6  
Experiments are described which provide more information on the role played by superficial waxes in the natural water-repellency of leaf surfaces. Contact angles of water were measured on a variety of leaf surfaces, before and after removal of wax, and on smooth films of the isolated superficial waxes. The differences in wettability of leaf surfaces are not wholly accounted for by differences which occur in the chemical and hydrophobic properties of their superficial waxes. Waxes isolated from leaves exhibiting contact angles less than 90° are usually more hydrophobic than the leaf surface itself. On most leaves exhibiting angles greater than 90° wax is the dominant factor governing water-repellency, the isolated wax normally making at least a 60 % contribution to the contact angle measured on the leaf surface. Additional factors, such as roughness, responsible for the occurrence of contact angles greater than 110° on certain leaf surfaces, reside in the wax layer. The hydrophobic properties of some leaves are unaffected by chloroform washing, revealing that superficial waxes play little part in their wettability.  相似文献   

2.
Leaf wettability decreases along an extreme altitudinal gradient   总被引:2,自引:0,他引:2  
The duration and amount of water captured on leaves and its functional significance is highly varied. Leaf surface wettability influences water absorption, gas exchange, pathogen infection, nutrient leaching, contamination by pollutants, self-cleaning properties and in freezing environments the probability of extrinsic ice nucleation. To test the impact of environment on the development of leaf wettability, this functional trait was measured in 227 dominant plant species along an extreme altitudinal environment gradient (186–5,268 m) on the wet and dry slopes of the Nepalese Himalayas. Plants from the understorey and open places in woodlands were also compared. Leaf wettability was assessed by droplet contact angle (θ), retention and leaf inclination measurement. With increasing altitude leaf wettability decreased significantly parallel to the observed atmospheric temperature decrease (0.5 K/100 m). Leaves from non-freezing tropical and subtropical origins were highly wettable (θ < 90°). Temperate leaves were non-wettable (110° < θ < 130°). Subalpine and alpine leaves were highly non-wettable (130° < θ < 150°) and adaxial pubescence occurred more frequently. Leaves taken from the understorey were more wettable but had a better droplet run off than leaves sampled in open places. In the semi-arid northern slopes (temperate to alpine) of the Himalayas leaf wettability was decreased in comparison to the southern humid side. The majority of the leaves had a low droplet retention <20°; higher values were linked to high non-wettability (θ > 130°) which was more often observed at high altitude. Good droplet run off at ±10° inclination was found in highly wettable leaves (θ < 90°) of tropical and subtropical origin and on leaves from the forest understorey. Structural properties for low wettability are developed in cold and dry environments and open sites with frequent dew formation as it appears to be an important functional trait to prevent a number of the negative effects adhering surface water may have.  相似文献   

3.
This study assessed the variation of leaf anatomy, chlorophyll content index (CCI), maximal stomatal conductance (g s max ) and leaf wettability within the canopy of an adult European beech tree (Fagus sylvatica L.) and for beech saplings placed along the vertical gradient in the canopy. At the top canopy level (CL28m) of the adult beech, CCI and leaf anatomy reflected higher light stress, while g s max increased with height, reflecting the importance of gas exchange in the upper canopy layer. Leaf wettability, measured as drop contact angle, decreased from 85.5°?±?1.6° (summer) to 57.5°?±?2.8° (autumn) at CL28m of the adult tree. At CL22m, adult beech leaves seemed to be better optimized for photosynthesis than the CL28m leaves because of a large leaf thickness with less protective and impregnated substances, and a higher CCI. The beech saplings, in contrast, did not adapt their stomatal characteristics and leaf anatomy according to the same strategy as the adult beech leaves. Consequently, care is needed when scaling up experimental results from seedlings to adult trees.  相似文献   

4.
Differences in anatomy and morphology of the kiwifruit leaves and leaf petioles might play a considerable role in the sex-determination. Three months after bud break (June), the kiwifruit leaves of both male and female plants, grown on the vegetative and generative shoots showed different leaf area (128.6 ± 13.45 cm2 in male and 104.5 ± 4.02 cm2 in female plants) and shape. The most frequently leaf shape was determined as "folium cordatum" and "folium rotundato-cordatum". Higher values of total leaf thickness of the female leaves (190 ± 3.84 μm) in comparison to male leaves (174 ± 3.52 μm) were estimated, resulting in the thicker adaxial leaf epidermis and especially in thicker palisade parenchyma in female leaves (136 ± 2.76 μm in comparison to 104 ± 1.61 μm in male leaves). Typically bifacial leaves were observed in both male and female leaves. Anomocytic stomata in hypostomatic leaves were found. The reticulate venation appears to be the main type of leaf venation. Stalked stellate multicellular trichomes on the abaxial leaf side were frequently observed in the leaves of both sexes. No important differences between male and female plants were found in the structures of vascular system in leaves and leaf petioles. Thus leaf thickness and surface morphology of adaxial leaf epidermis can be considered as important structural parameters in the sex determination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Semi-decussate phyllotaxis, in which leaves arise singly and the divergence angles between successive pairs of leaves alternate between approximately 90° and approximately 180°, is accounted for by a contact pressure model. It is assumed that leaf primordia are initiated at a divergence angle close to the Fibonacci angle of 137·5°, that the primordia move under contact pressure, and that when a primordium first experiences contact pressure all other primordia are fixed. Extensions of the model account for: psuedodecussate phyllotaxis, where the leaves appear to arise in pairs; semi-tricussate and pseudo-tricussate phyllotaxis, where the leaves are arranged in, respectively, dissolved or apparent trimerous whorls; and phyllotaxis of the 1,3 series, where the divergence angle is about 100°. The compatibility of the model with current theories of Fibonacci phyllotaxis is discussed.  相似文献   

6.
Superhydrophobic surfaces are often found in nature,such as plant leaves and insect wings.Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves,biomimetic hydrophobic surfaces with high or low adhesion were prepared with a facile drop-coating approach in this paper.Poly(vinyl alcohol) (PVA) was used as adhesive and SiO2 nanoparticles were used to fabricate surface micro-structure.Stearic acid or dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) were used as low surface energy materials to modify the prepared PVA/SiO2 coating surfaces.The effects of size of SiO2 nanoparticles,concentration of SiO2 nanoparticle suspensions and the modifications on the wettability of the surface were investigated.The morphology of the PVA/SiO2 coating surfaces was observed by using scanning electron microscope.Water contact angle of the obtained superhydrophilic surface could reach to 3°.Stearic acid modified PVA/SiO2 coating surfaces showed hydrophobicity with high adhesion.By mixing the SiO2 nanoparticles with sizes of 40 nm and 200 nm and modifying with DFTMS,water contact angle of the obtained coating surface could be up to 155° and slide angle was only 5°.This work provides a facile and useful method to control surface wettability through changing the roughness and chemical composition of a surface.  相似文献   

7.
Extraction, thin layer chromatography and gas chromatography-mass spectrometry of leaf surface waxes of Polygonum orientale L. (Polygonaceae) weed revealed 11, 15 and 11 free fatty acids in young, mature and senescent stages. Oleic acid was the predominant in young leaves (5950 ± 111 µg); whereas palmitic acid was the predominant fatty acids, representing 4247.5 ± 23 and 6644 ± 110 µg in mature and senescent leaves, respectively. Both tridecanoic and heneicosanoic acids were not detected in young and senescent leaves, and myristic and heptadecanoic acids were not identified in young leaves; whereas lauric and nonadecanoic acids were not detected in senescent leaves. The free fatty acids from young, mature and senescent weed leaves, and the mixtures of synthetic fatty acids mimicking free fatty acids of three types of weed leaves attracted female Galerucella placida (Coleoptera: Chrysomelidae) at the minimal amounts of 2, 1 and 2 leaf equivalent free fatty acids, respectively, in Y-shaped glass tube olfactometer bioassays under laboratory conditions. Individual synthetic pentadecanoic, palmitoleic, stearic, nonadecanoic and docosanoic acids at 44.82, 9.91, 92.22, 18.33 and 15.88 µg, respectively, elicited attraction of the insect. A synthetic blend of 3.59, 7.89, 44.82, 9.91, 32.31, 18.33 and 15.88 µg of lauric, myristic, pentadecanoic, palmitoleic, heptadecanoic, nonadecanoic and docosanoic acids, respectively, indicated highest attraction of the insect.  相似文献   

8.
Optical replicas of leaf surfaces were made for characterizingthe lens properties of individual epidermal cells. Using a dentallatex, moulds were made of leaf surfaces and subsequently usedto produce agarose replicas. The replicas focused light in amanner similar to intact epidermal cells and it was possibleto measure both focal lengths and intensifications within leafreplicas of Thermopsis montana, Mahonia repens, and Smilacinastellata which had epidermal cells of different diameter. Focallengths ranged from 74—130 µm which indicated thatlight was concentrated within the underlying photosynthetictissues of these leaves. Focal intensifications were measuredsensiometrically and were 1.5 for T. montana and 2-6 for theother species. These values compare favourably with calculatedfocal lengths and measurements taken from isolated epidermallayers. The results indicate that the epidermis can concentratelight within the leaf to amounts well in excess of ambient light.Furthermore, the replicas faithfully reproduced fine anatomicaldetails from a wide variety of leaves and they provide a non-destructiveway to reproduce surface characteristics for anatomical andphysiological studies.  相似文献   

9.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

10.
Effect of Surface-Active Pseudomonas spp. on Leaf Wettability   总被引:6,自引:1,他引:5       下载免费PDF全文
Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the population. The possible ecological implications are discussed.  相似文献   

11.
Ingeborg Rentschler 《Planta》1971,96(2):119-135
Summary The wettability of a leaf surface is defined by the contact angle between a water-droplet and the surface of the leaf.Contact angles of 60–80° were measured on easily wettable leaves. These leaves have no wax on the outer cuticular layer.Contact angles of 130–160° were measured on leaves with a low wettability. These leaves have wax on the outer cuticular layer, which shows submicroscopic structures characteristic of the particular plants.A comparison of the wettability and the different structures of the wax showed no true distinctions.The wax does not adhere strongly to the outer cuticular layer and is cast off in the case of old leaves. Therefore the wetability alters with the age of the leaves. If the wax on young leaves is destroyed or removed by outer influences it can be produced again within a few hours.The rebuilt structure of the wax is not always similar to the original one. When the wax was dissolved by organic solvents no new wax formation was observed.Cigarette smoke greatly increases the wettability of leaves of Tropaeolum majus, parochetus communis and Chelidonium majus without causing a visible alteration of the submicroscopic structure. In this case the leaves recover their water-repellency within a few hours, but not if they were treated with Diesel smoke.When the wax structure was destroyed by fungus or Aleurodina no new wax formation was observed.

Herrn Professor Dr. Walter Rentschler zum 60. Geburtstag  相似文献   

12.
Angle meristems are mounds of meristematic tissue located atdorsal and/or ventral branch points of the dichotomising stemaxes of many species of Selaginella (Lycophyta). The presentstudy examined the development of ventral angle shoots of S.martensii in response to removal of distal shoot apices (decapitation).Scanning electron microscopy of sequential replicas of developingangle meristems and angle shoots revealed that for the firsttwo pseudowhorls of leaf primordia, particular leaves are notattributable to particular merophytes of the angle meristemapical cell. Individual leaf primordia of the first (outer)pseudowhorl often form from more than one merophyte. Neitherthe shape of the angle meristem apical cell nor the directionof segmentation has any effect on the development of the angleshoot. Additionally, the apical cell of the angle meristem doesnot necessarily contribute directly to either of the new shootapices of the developing angle shoot. The first bifurcationof the angle shoot shows a remarkably consistent relationshipto the branching pattern of the parent shoot. The strong branchof the first angle shoot bifurcation typically occurs towardthe weak side branch of the parent shoot. Anatomical studiesshowed that bifurcation of the young angle shoot involved theformation of two new growth centres some distance away fromthe original angle meristem apical cell; new apical cells subsequentlyformed within these. These results provide additional supportfor the view that cell lineage has little or no effect on finalform or structure in plants.Copyright 1994, 1999 Academic Press Selaginella martensii Spring, Lycophyta, angle meristem, apical cell, shoot apical meristem, leaf primordium, branching, dichotomy, morphogenesis, determination, competence, development, mould and cast technique, replica technique, scanning electron microscopy  相似文献   

13.
Abstract Leaf wettability, cuticular wax composition, and microbial colonization of upper and lower leaf surfaces of ivy (Hedera helix L.) was investigated for young and old leaves sampled in June and September. Contact angles of aqueous buffered solutions measured on young leaf surfaces ranged between 76° and 86° and were not dependent on the pH value of the applied droplets. Contact angles measured on old leaf surfaces were up to 32°, significantly lower than on young leaf surfaces. Furthermore, contact angles were significantly lower using aqueous solutions of pH 9.0 compared to pH 3.0, indicating the influence of ionizable functional groups on leaf surface wetting properties. Observed changes in leaf wetting properties did not correlate with different levels of alkanoic acids in cuticular waxes. However, microscopic examination of the leaf surfaces indicated the influence of epiphytic microorganisms on wetting properties of old leaves, since their surfaces were always colonized by epiphytic microorganisms (filamentous fungi, yeasts, and bacteria), whereas surfaces of young leaves were basically clean. In order to analyze the effect of epiphytic microorganisms on leaf surface wetting, surfaces of young and clean ivy leaves were artificially colonized with Pseudomonas fluorescens. This resulted in a significant increase and a pH dependence of leaf surface wetting in the same way as it was observed on old ivy leaf surfaces. From these results it can be deduced that the native wetting properties of leaf surfaces can be significantly masked by the presence of epiphytic microorganisms. The ecological implications of altered wetting properties for microorganisms using the leaf/atmosphere interface as habitat are discussed. Received: 20 March 1999; Accepted: 5 July 1999; Online Publication: 18 July 2000  相似文献   

14.
The fine-structure, epicuticular wax and contact angle characteristics of Chenopodium album leaf surfaces have been examined with respect to the control of this weed by the herbicide bentazone. Epicuticular wax analysis and contact angle measurements suggest a relative impermeability to bentazone (BAS 35107H), that may be enhanced by the inclusion of the oil adjuvant Actipron (BP Oil Ltd) to the formulation. Under different regimes of light, temperature and relative humidity the chemical composition of the epicuticular wax layer remained relatively constant, whereas herbicide efficacy was greatly altered. These findings are discussed in relation to the mode of action and penetration of bentazone in this species.  相似文献   

15.
This study evaluated the effect of urban habitat quality on the wettability of tree leaves. We measured leaf wettability of five common tree species, i.e., Alnus glutinosa, Acer pseudoplatanus, Betula pendula, Quercus robur and Sambucus nigra, in semi-natural and industrial urban habitats in the city of Gent (Belgium). Possible seasonal variation was taken into account by measuring in late spring and in late summer. Drop contact angle (DCA), and height over width ratio were measured on the abaxial and the adaxial leaf surface as proxies for leaf wettability. The relative standard deviation for the height over width ratio was higher than for the DCA, so that only the latter was considered further.Habitat type significantly influenced leaf wettability: the DCA values of Q. robur leaves were significantly lower in the industrial than in the semi-natural areas, in both June and September while, for S. nigra, the DCA was in both sampling events significantly higher in the industrial areas. For the adaxial leaf side, the differences between the considered habitats were more pronounced in June than in September. The adaxial DCA of A. pseudoplatanus was significantly higher in June compared to September, while the opposite held for abaxial values of A. glutinosa. We conclude that leaf wettability is potentially a good indicator to point out differences in urban habitat quality, but selection of the most sensitive tree species and the appropriate time of measuring is an important prerequisite.  相似文献   

16.
The wettability of leaf surface, commonly represented by contact angle (CA), affects various physiological and physical processes. The present study aims to better understand the wettability of tea leaves and elucidate its influence on the energy barrier of the droplet condensation process. The CA values of different leaf ages (young, mature and old) of five famous tea cultivars (Maolu, longjing 43, Huangjinya, Zhongcha 108 and Anji Baicha) were measured via the sessile drop method, and the micro-morphology of two cultivars leaves (Maolu, Zhongcha 108) was investigated by a 3D super depth-of-field digital microscope. Specifically, two radically distinctive types of CA trends were observed, one was the decreased firstly and then increased slightly with the increase of leaf age, while the other stayed constant. The valley depth or maximum height (RZ) of Maolu leaf surface increased with the leaf age while the RZ of Zhongcha 108 leaf remained unchanged by comparing the microscopic features. The Maolu mature leaf CA decline attributed to the young leaf was hydrophilic (θ < 90°), and it was considered that surface structures like folds and pits on old leaf played a crucial role in making CA increased. Small deviation in CA can lead to significant error in calculation of the contact angle function of energy barrier in phase change. It will have great significant for simulating and better understanding the formation of frost on tea leaves.  相似文献   

17.
K. Song  T. Min  J.-Y. Jung  D. Shin 《Biofouling》2016,32(5):535-545
This work reports on a nitinol (NiTi) surface modification scheme based on a chemical oxidation method, and characterizes its effects on wetting, biofouling and corrosion. The scheme developed is also compared with selected previous oxidation methods. The proposed method turns NiTi into superhydrophilic in ~5 min, and the static contact angle and contact angle hysteresis were measured to be ~7° and ~12°, respectively. In the PRP (platelet rich plasma) test, platelet adhesion was reduced by ~89% and ~77% respectively, compared with the original NiTi and the NiTi treated with the previous chemical oxidation scheme. The method developed provides a high (~1.1 V) breakdown voltage, which surpasses the ASTM standard for intervascular medical devices. It also provides higher superhydrophilicity, hemo-compatibility and anti-corrosion resistance than previous oxidation schemes, with a significantly reduced process time (~5 min), and will help the development of high performance NiTi devices.  相似文献   

18.
The purpose of this study was to investigate supposedly positive biological effects of coloured hailnets on microclimate, including photosynthetically active radiation (PAR), UV-B, air, soil, fruit and leaf temperature as well as humidity, which in turn may affect leaf anatomy, tree growth and fruit quality; apple was chosen as a model crop at Klein-Altendorf near Bonn, Germany; adjacent uncovered trees served as control. Red and green hailnets transmitted 3–6% more red or green light, without alteration of the red:far red (R–666 nm:FR–730 nm) ratio (0.99–1.01:1) and hence without affecting the phytochrome system. The microclimate was changed with a reduction by 12–23% in PAR and, to a larger extent, by 20–28% in UV, viz. shading. Light measurements at a 45° angle, to mimic the fruit or leaf position, showed that PAR was 90–210 µmol m−2 s−1 larger outside on a sunny summer day than under the white or red-white and 150–340 µmol m−2 s−1 larger than under red-black and green-black hailnets. Air temperature and relative humidity under coloured hailnets decreased by ca. 1.3°C and by ca 2% rh (cloudy) to 5% rh (sunny day), respectively, compared with outside; leaf temperature was decreased by up to 3°C and fruit temperature by up to 6°C. Soil temperatures at 5 cm depth were 0.5–1°C colder under red-black and green-black hailnets, but up to 0.9°C warmer under white and red-white hailnets compared with the uncovered control outside. Alternate bearing had a larger impact on vegetative growth in the affected year than the coloured hailnets; annual trunk diameter increments in cv. ‘Fuji’, i.e. the variety susceptible to alternate bearing, showed a larger variation than cv. ‘Pinova’ without alternate bearing. Reproductive growth, viz. return bloom and leaf anatomy were impaired by the coloured hailnets. Apple trees under dark hailnets developed thinner leaves with a thinner epidermis and fewer layers of palisade cells. These leaves were 3.5°C (dark hailnets) and 2.5°C (white hailnets) cooler than outside on a sunny day compared with ca. 1.5°C (dark hailnets) and 0.85°C (white hailnets) on a cloudy day. Transpirational cooling of cv. ‘Fuji’ leaves was 0.3–0.6°C outside and 1.4–1.6°C under the green-black hailnet on sunny days compared to <0.1°C on cloudy days. As a practical application, apple fruit colouration was dependent on light (PAR and UV-B) transmission of the respective hailnet colour.  相似文献   

19.
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.  相似文献   

20.
The present study was carried out to investigate the degree of leaf wetness and its capacity to retain water droplets in relation to leaf morphological characteristics of Valeriana jatamansi J. grown under open and shade habitats. Leaves developed in open habitats had less wettability but higher capacity to retain water droplets and more number of stomata than shade leaves. A significant positive correlation of contact angle () were noticed with trichome length, droplet retention and wax content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号