首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高通量测序技术及其应用   总被引:14,自引:0,他引:14  
高通量测序技术是DNA测序发展历程的一个里程碑,它为现代生命科学研究提供了前所未有的机遇。详细介绍了以454、Solexa和SOLiD为代表的第二代高通量测序技术,以HeliScope TIRM和Pacific Biosciences SMRT为代表的单分子测序技术,以及最近Life Science公司推出的Ion Personal Genome Machine (PGM)测序技术等高通量测序技术的最新进展。在此基础上,阐述了高通量测序技术在基因组测序、转录组测序、基因表达调控、转录因子结合位点的检测以及甲基化等研究领域的应用。最后,讨论了高通量测序技术在成本和后续数据分析等方面存在的问题及其未来的发展前景。  相似文献   

2.
随着新一代测序技术的发展,高通量测序技术的应用越来越广泛,其产生的海量数据的存储、查询需要专门的数据库辅助,NCBI的SRA(Sequence Read Archive)数据库是高通量测序存储的代表,本文对SRA数据库的组织架构,数据形态作了综述分析,并对其存贮的数据进行了总结。  相似文献   

3.
随着分子生物信息数据量高速增长,生物信息学面临着大规模、高通量、密集型计算的巨大挑战。为有效利用计算机资源,缩短高通量生物信息计算程序执行时间,我们基于Globus Toolkit网格中间件,实现了一个支持高通量生物数据计算的网格系统(Biological Data Computing Grid,简称BDCGrid)。BDCGrid计算网格系统模型可以有效整合中小型生物信息学实验室计算机资源,大大缩短高通量生物信息计算程序执行时间,为相关研究人员利用现有计算机资源处理大规模、高通量生物信息计算任务提供一种新的途径。  相似文献   

4.
近几年飞速发展的高通量测序技术(next generation sequencing,NGS)在生命科学研究的各个领域充分展现了其低成本、高通量和应用面广等优势。在现代农业生物技术领域,利用高通量测序技术,科学家们不仅能更经济而高效对农作物、模式植物或不同栽培品种进行深入的全基因组测序、重测序,也可以对成百上千的栽培品种进行高效而准确的遗传差异分析、分子标记分析、连锁图谱分析、表观遗传学分析、转录组分析,进而改进农作物的育种技术,加快新品种的育种研究。其中,获得农作物的全基因组序列是其他研究和分析的基础。本文通过介绍近年来发表的一些利用高通量测序技术进行的农作物全基因组测定和组装的工作,展示高通量测序技术在现代农业生物技术领域的广泛前景以及其建立起来的研究基础。  相似文献   

5.
原核生物在自然界中分布广泛、数量巨大,参与多种全球性的物质循环和能量传递。然而,长期以来对其多样性的测度受到研究技术的限制。随着高通量测序、生物芯片等新技术的不断更新,原核生物多样性研究途径也在不断变化。目前,用于环境中原核生物多样性研究的高通量测序技术主要有Genome Sequencer FLX(GS FLX)测序系统和Illu-mina Genome Analyzer测序系统;而高通量芯片则以GeoChip为代表。但这些新兴技术手段各自的特点不同,得到的大量序列信息如何用于原核生物多样性测度以及哪些多样性测度手段适用,是研究人员需要面对的问题。因此,本文总结和比较了目前最新的研究手段和程序工具,并归纳了适应目前技术条件的原核生物多样性的主要研究途径。  相似文献   

6.
随着二代测序技术的快速发展,数据量不断累积,肿瘤学家的目光逐渐由多物种测序转移至高通量测序数据的分析和比对。基因数据分析方法层出不穷,高通量的组学分析手段不断优化和创新,基因数据的挖掘和分析工作正处于飞速发展的时期。以肿瘤病人样本为核心的数据库The Cancer Genome Atlas (TCGA)由此应运而生,该数据库全方位记录了从临床肿瘤病人样本得到的基因数据如DNA序列、转录本信息、表观遗传学修饰等。本文主要从数据分析方法、TCGA数据库及其应用实例等3个方面详细介绍了肿瘤相关基因数据的深入挖掘和生物信息学分析方法的最新研究进展,以期为研究人员利用大数据发现肿瘤防治相关的新靶点提供借鉴和参考。  相似文献   

7.
454测序技术在微生物生态学研究中的应用   总被引:1,自引:0,他引:1  
以Sanger法(双脱氧核苷酸末端终止法)为代表的第1代测序技术由于其成本高、速度慢、通量低等不足,满足不了大规模测序的要求.进入21世纪后,以Roche 454为代表的第2代测序技术诞生了,454测序法作为一种高通量的测序方法,近年来已被广泛应用于微生物生态学研究中.介绍了该测序技术的原理和操作步骤,结合本实验室的研...  相似文献   

8.
王志明  潘元龙  吴俊  朱宝利 《微生物学报》2012,52(10):1219-1227
【目的】对卡介苗(Bacillus Calmette-Guerin,BCG)美国株(BCG Tice)进行基因组补缺口(补洞)工作,以得到它的基因组完整序列。【方法】首先对BCG Tice进行高通量测序,使用SOAPdenovo软件对得到的数据进行拼接。由于在高通量测序的过程中基因组某些区域测序覆盖度低,测序质量差会使测序结果经拼接后形成众多的重叠群(contig),相邻的位置关系确定的contig形成一个scaffold,contig之间未测到的区域为缺口序列(gap),在contig末端设计引物进行PCR扩增,得到连接相邻contig的PCR产物,对PCR产物进行测序。通过优化PCR引物设计策略,尝试不同的聚合酶进行聚合反应,调整PCR反应条件并结合PCR产物构建克隆测序等方法,补齐contig之间的缺口序列。【结果】完成了BCG Tice的全基因组测序,得到了它的基因组完整序列,序列已提交到美国国立生物技术信息中心(NCBI)的GenBank数据库。【结论】BCG属于高GC含量的革兰氏阳性细菌,其基因组GC含量高达65.65%。本文以BCG Tice基因组补洞为例,对高GC含量基因组补缺口过程中遇到的问题与采取的策略给予概述,望给相关高GC含量基因组的物种全基因组测序补缺口工作提供一些借鉴。  相似文献   

9.
新一代高通量RNA测序数据的处理与分析   总被引:4,自引:0,他引:4  
随着新一代高通量DNA测序技术的快速发展,RNA测序(RNA-seq)已成为基因表达和转录组分析新的重要手段.RNA-seq技术产生的海量数据为生物信息学带来了新的机遇和挑战.有效地对测序数据进行针对性的生物信息学处理和分析,成为RNA-seq技术能否在科学探索中发挥重大作用的关键.以新一代Illumina/Solexa测序平台所产生的数据为例,在扼要介绍高通量RNA-seq测序流程的基础上,对RNA-seq数据处理和分析的方法和现有软件做一个较为全面的综述,并对其中有待进一步研究的问题进行展望.  相似文献   

10.
单细胞转录组测序(Single cell RNA sequencing,ScRNA seq)是一种变革性的生物技术,以前所未有的高分辨率来解析组织复杂性,解决了普通转录组测序(Bulk RNA sequencing)无法回答的问题。但单细胞数据的高通量及复杂性给分析带来极大难度,批次效应(Batch effects,BEs)的处理便是主要挑战之一。批次效应是高通量生物数据分析中的技术性偏倚,其来源及处理具有高复杂性和研究依赖性。根据组织类型、测序技术及实验设计的不同,测序数据需采用不同的评估、分析、测量及处置流程来实现有效的批次效应处理。评测批次效应在单细胞数据分析中极易被忽略,但却有助于判断批次效应的来源、对数据变异的解释度、对数据分析结果的影响度及处理方法,是有效处理批次效应的基础。因此,本篇综述聚焦单细胞转录组数据的批次效应,分别论述批次效应的概念、与普通转录组批次效应的区别、评测方法及面临的挑战,并对未来发展做出展望。  相似文献   

11.
环状RNA(circular RNA,circRNA)是一类具有重要生物作用的内源性RNA,大多在可变剪接过程中通过5’端和3’端反向共价连接形成闭合环状结构。目前,环状RNA的识别策略主要分为两大类:一类方法从高通量测序(RNA-seq)数据中检测反向剪接位点,另一类直接从RNA序列中检测成环特征。由于数据本身和识别方法的不足,依赖高通量测序数据的识别工具存在假阳性率高和不同工具间重合率低等缺点。因此,充分利用序列本身的特征来识别环状RNA是环状RNA识别的研究方向。本文总结了8种基于序列特征预测环状RNA的工具,并给出它们在测试数据集上的测试结果,为后续研究和优化提供数据支持。  相似文献   

12.
目的:探索不同样品前处理方法对于不同类型病毒检测的效果。方法:分别将携带乙肝病毒(双链环状DNA病毒)、丙肝病毒(单正链RNA病毒)、TTV(Torque teno virus)(单链环状DNA病毒)的血清等比例混合,模拟混合感染,然后分别采用多重置换扩增(MDA)和随机锚定PCR扩增并进行高通量测序,同时以原始样品(未扩增)直接高通量测序作为对照。结果:原始样品(未扩增)直接测序,产出的数据大部分为人类的序列;MDA方法中绝大部分数据为TTV、乙肝病毒;随机锚定PCR扩增方法中绝大部分数据为乙肝病毒。结论:MDA方法适合扩增环状病毒,随机锚定PCR扩增适合含量高的病毒,不做任何处理直接高通量测序检测病毒效果最差。本研究可为指导不同类型病原体如何选择扩增方案提供借鉴。  相似文献   

13.
杨旭  王俊 《遗传》2011,(8):885
科学发现依赖于技术的进步。以第二代测序技术为代表的新一代高通量技术的诞生和迅猛发展为医学遗传学研究开辟了新途径,使得疾病的研究模式发生了重大转变。从过去以假说为导向的研究模式转变为如今以数据为  相似文献   

14.
系统生物学时代,各种高通量组学技术产生了大量数据。一些旨在挖掘数据和整合信息的计算机建模技术也逐渐用于系统水平定量分析细胞代谢。模型有助于指导实验设计,实验结果反过来检验和优化模型,虚实结合,有利于在系统层面认识复杂的代谢过程。根据这些信息,可以设计、优化工业微生物代谢特征,高表达目标代谢物。本文综述了系统生物技术在工业(药用)微生物育种和高通量筛选中的最新应用进展。  相似文献   

15.
2004年全球生物技术作物商业化形势持续看好   总被引:3,自引:0,他引:3  
20 0 5年 1月 1 7日 ,农业生物技术应用国际服务组织 (ISAAA)发布了由该组织主席及创始人CliveJames先生撰写的 2 0 0 4年度全球生物技术 /转基因作物商业化状况研究报告。报告中提到 ,2 0 0 4年全球生物技术作物的种植面积比 2 0 0 3年增长了 2 0 %(增加了 1 330万公顷 ) ,达到 81 0 0万公顷。该研究报告称 ,2 0 0 4年有 1 7个国家的近 82 5万农民种植了生物技术作物 ,种植生物技术作物的农民数量比 2 0 0 3年增加了 1 2 5万。其中特别显著的是 ,新增的种植生物技术作物的农民中 90 %来自发展中国家。事实上 ,这是发展中国家的生物技术…  相似文献   

16.
小单孢菌(Micromonospora rifamycinica)AM105是一种高GC含量的革兰氏阳性放线菌,分离自中国南海红树林沉积物,能够合成利福霉素类抗生素。目前,还没有相关研究报道Micromonospora rifamycinica的全基因组序列,这限制了代谢产物合成途径和比较基因组学等研究。本研究首次通过高通量测序技术对小单孢菌AM105进行全基因组测序,使用Velvet软件进行组装拼接得到388个Contigs,整个基因组大小约6.85 Mb,GC含量为73.1%,序列已提交至美国国立生物技术信息中心(NCBI)的Gen Bank数据库(LRMV01000000)。本研究同时对基因组序列进行了基因预测与功能注释、COG和GO聚类分析及次级代谢产物合成基因簇预测等,相关研究结果将为小单孢菌Micromonospora rifamycinica的功能基因组学研究提供基础数据。  相似文献   

17.
随着基因测序技术的创新和应用,新的高通量测序技术不断涌现,以Pacific Biosciences(PacBio)公司的单分子实时测序(single molecule real time sequencing)为代表的第三代测序(third generation sequencing,TGS)技术开始逐渐应用于基因组研究,包括大型基因组拼装、基因结构变异和表观遗传研究等方面。本文主要对TGS技术的原理、特点和应用,特别是在病毒研究中的应用进行介绍,并与第二代测序(next generation sequencing,NGS)技术进行比较,为基因组测序技术的选择及其临床应用提供一定参考。  相似文献   

18.
由于传统研究方法成本和速度的限制,远远满足不了对微生物群落大规模的研究,以454测序为代表的新一代高通量测序技术凭借低成本、高通量、流动自动化的优势为研究微生物的多样性和组成提供了新的技术平台。本文就近年来454测序技术在研究人体肠道微生物与疾病关系的应用进行了综述。  相似文献   

19.
高通量测序技术在动植物研究领域中的应用   总被引:4,自引:0,他引:4  
高通量测序是核酸测序研究的一次革命性技术创新, 该技术以极低的单碱基测序成本和超高的数据产出量为特征, 为基因组学和后基因组学研究带来了新的科研方法和解决方案. 在动植物研究领域, 高通量测序引领了一次具有里程碑意义的科学研究模式革新, 科研人员可利用该技术在基因组、转录组和表观基因组等领域展开多层次多方面多水平研究. 本文就高通量测序技术应用于动植物基因组学和功能基因组学研究进展进行了系统阐述, 并对当前高通量测序技术的现状和热点及未来的发展趋势作了深入剖析和讨论.  相似文献   

20.
高通量测序技术是研究环境微生物的有效手段,而以纳米孔测序为代表的第三代测序技术以其测序读长长、测序速度快、测序数据实时监控、仪器方便携带、无GC偏好性、无需经过PCR扩增等显著优势有力推动了环境微生物研究的发展.本文对纳米孔测序技术的技术原理和特点进行了简要概述,重点介绍了纳米孔测序技术在环境微生物扩增子测序、宏基因组...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号