首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
电压门控钠离子通道是一类门控状态由细胞膜内外电势差所控制,仅在去极化膜电压下才能被激活打开的跨膜钠通道蛋白。其中,Nav1.4在骨骼肌中高度表达,主要形成肌膜动作电位上升支,参与人体一系列骨骼肌相关的生理病理活动。钠离子通道阻滞药与激活药是治疗心血管系统钠离子通道病的两大类药物,对其进行深入、全面的了解具有重要意义。本文从Nav1.4的分子结构、功能、药物开发等方面出发,对Nav1.4的调节机制、相关疾病以及高选择性药物研究情况进行简要综述,为基于Nav1.4作为靶标研发的药物奠定一定的理论依据。  相似文献   

2.
电压门控钠离子通道疾病的研究进展   总被引:1,自引:0,他引:1  
陈程浩  周桃  云慧  刘新星  谢建平 《生物磁学》2013,(30):5995-6000
细胞膜上的电压门控钠离子通道(Voltage-gated Sodium Channels,VGSCs)是细胞形成动作电位过程中重要的组成构件,由一个大的α亚基和一个或多个不同的β亚基组成,中央是具高度选择性只允许钠离子通过的亲水通道。电压门控钠离子通道在调节细胞膜电位、维持细胞离子稳态、细胞增殖和凋亡等生理过程中发挥着重要作用,因而钠离子通道自身的异变或是相关基因的变异都可能引起一系列身体病变。本文主要介绍了电压门控钠离子通道的结构与功能,阐述了其与癌细胞侵袭转移和神经病理性疼痛的关系,并介绍了几种典型的由钠离子通道基因变异引起的疾病。随着对电压门控钠离子通道及其异常分子机制研究的不断深入,新成果将为生理学、药理学和病理学等领域的研究提供理论基础和新的研究思路,为离子通道疾病的临床预防、诊断与治疗找到新途径。  相似文献   

3.
《生命科学研究》2016,(3):196-201
敬钊毒素-Ⅲ(JingzhaotoxinⅢ,JZTX-Ⅲ)是从敬钊缨毛蛛毒液中分离到的一种门控调节型毒素,能选择性抑制钠通道亚型Nav1.5激活,但对其他6种钠通道亚型(Nav1.1 Nav1.4 Nav1.6和Nav1.7)无抑制作用。为了更好地研究钠通道结构与功能之间的关系,采用全细胞膜片钳技术检测了JZTX-Ⅲ对表达在ND7123细胞上的Nav1.8画道的影响。结果显示,JZTX-Ⅲ抑制Nav1.8电流,并且这种抑制作用具有时间和浓度依赖性,抑制时间常数和IC_(50)值分别为41.15±0.6 s和1.4±0.23μmol/L;1μmol/JZTX-Ⅲ使Nav1.8画道的电流-电压关系曲线和激活曲线分别向去极化方向漂移10 mV和9mV,使Nav.1.8通道的稳态失活曲线向超极化方向漂移16 mV,明显改变Nav1.8通道的激活和稳态失活动力学。此外,钠通道序列比对结果提示JZTX-Ⅲ可能通过结合Nav1.8通道DIIS3~S4连接环上的Lys(K)残基抑制Nav1.8通道。以上研究结果为进一步探索钠通道结构与功能之间的关系奠定了基础。  相似文献   

4.
钠通道NaV1.7是电压门控性钠通道的亚型之一。大多数钠离子通道NaV1.7表达在背根神经节(DRG)小C纤维的伤害性感受器上,具有缓慢开放和缓慢关闭失活的特点。它能够产生大量的斜坡电流,降低感觉神经元中动作电位产生的阈值,放大外来小的缓慢的去极化斜坡电流,从而增加神经元兴奋性,对疼痛的产生、传递、调节具有关键性作用。随着遗传学研究的不断深入,钠离子通道NaV1.7的功能获得性突变和功能缺失性突变,使其成为了新型镇痛疗法中一个的特别有吸引力的药物靶点,受到人们的广泛关注。而研究发现,NaV1.7通道在不同因素引起的神经病理性疼痛中通过不同途径提高神经元兴奋性,参与神经病理性疼痛,给NaV1.7选择性抑制剂研发带来了巨大阻碍。目前,虽然已有的NaV1.7选择性抑制剂具备有效镇痛作用,且无明显副作用或成瘾问题,但寻找NaV1.7选择性配体极其困难。此外,现有的NaV1.7选择性抑制剂也因神经病理性疼痛类型的不同在抑制效力、靶向性、安全性以及可行性等方面存在差异。提示寻找NaV1.7通道作用于不同神经病理性疼痛的普遍机制或NaV1.7通道特有的受体结合位点,可能是未来NaV1.7选择性抑制剂研发的主要方向。本文就NaV1.7通道在不同因素引起的神经病理性疼痛中的主要作用进行简要综述。  相似文献   

5.
电压门控型钠离子通道(Voltage-gated sodium channel,VGSC)广泛分布于兴奋性细胞,是电信号扩大和传导的主要介质,在神经细胞以及心肌细胞兴奋传导等方面发挥重要作用。钠离子通道结构和功能的异常会改变细胞的兴奋性,从而导致多种疾病的发生,如神经性疼痛、癫痫,以及心律失常等。目前临床上多采用钠离子通道抑制剂治疗上述疾病。近些年,研究人员陆续从动物的毒液中分离纯化出具有调控钠离子通道功能的神经毒素。这些神经毒素多为化合物或小分子多肽。现已有医药研发公司将这些天然的神经毒素进行定向设计改造成钠离子通道靶向药物用于临床疾病的治疗。此外,来源于七鳃鳗Lampetra japonica口腔腺的富含半胱氨酸分泌蛋白(Cysteine-rich buccal gland protein,CRBGP)也首次被证明能够抑制海马神经元和背根神经元的钠离子电流。以下针对钠离子通道疾病及其抑制剂生物学功能的最新研究进展进行分析归纳。  相似文献   

6.
电压门控钠通道NaV1.7选择性高表达在伤害感受性脊髓背根神经节的感觉神经元上,在疼痛电信号的产生、传导和调控中具有重要的生理功能。伤害性感受器上的NaV1.7亦在慢性神经痛和炎症痛的病理生理过程中发挥关键作用。近年来的研究发现,人类遗传性疼痛症(如红斑性肢痛病)与NaV1.7钠离子通道基因SCN9A的某些功能增强型突变相关。最近Cox等首次报道了SCN9A突变将导致人先天痛觉完全丧失,而无痛症患者机体其它功能正常,提示NaV1.7将可能成为有效治疗疼痛而无副作用的一个新靶标。  相似文献   

7.
《生命科学研究》2016,(3):255-259
电压门控钠通道是细胞兴奋性的重要分子基础,在进化演变中远早于神经元。伴随从细菌到脊椎动物的适应性演变,电压门控钠通道逐渐呈现出复杂的结构、功能和亚型多样性,且与诸多人类疾病密切相关。明确电压门控钠通道时空演变的适应性进化,解析电压门控钠通道的功能和结构多样性与人类重大疾病发生机制的相关性,有助于推进电压门控钠通道靶向临床诊疗新策略和新药的发现。  相似文献   

8.
小胶质细胞作为常驻的免疫细胞,遍布于大脑和脊髓中,提供持续的免疫监视活动。当中枢神经系统组织细胞受到损伤时,小胶质细胞发生激活从而引起多种生物学效应。近年来研究显示多种亚型的电压门控型钠离子通道在小胶质细胞表面表达,并参与调节小胶质细胞的激活、吞噬、多种细胞因子/趋化因子的释放,迁移以及浸润等生理过程。本文针对电压门控型钠离子通道参与调节小胶质细胞生物学功能的最新进展进行了分析与归纳,并探讨其作用机制及未来研究的发展趋势。  相似文献   

9.
Nav1.5α亚单位是电压-门控Nav1.5Na+通道发挥作用的核心亚单位,在心肌中首先被成功克隆,是心脏电生理活动最主要的Na+通道α亚单位.最新的研究发现,Nav1.5不仅可以在神经元等非心肌组织中表达,而且其表达的选择性剪接体的类型及电生理学特性与心肌Nav1.5亦不同.目前,不仅对Nav1.5发挥功能的调控机制及与心脏传导功能障碍等疾病的发病关系有了深入的了解,而且一些常见疾病,如肿瘤和癫痫等的发生也被认为可能和Nav1 .5有关. 本文结合国内外对Nav1.5的最新研究及本小组的工作,对Nav1.5的结构、选择 性剪接、基因定位、电生理学活性及与疾病的关系作一详细综述.  相似文献   

10.
电压门控钠通道是细胞电兴奋的重要分子基础,由一个α孔道亚基和单个或多个β辅助亚基构成。β亚基以直接与钠通道α亚基结合或以细胞粘附分子方式,组合或单独调节α亚基的表达定位及门控特性。因此,β亚基与α亚基不同亚型的细胞特异性表达组合,是神经元内在特性的内源性调控机制之一。本文基于钠通道β亚基不同亚型差异表达与功能的多样性调控,解析疼痛、癫痫等通道病发生发展的β亚基相关机制,以期为靶向电压门控钠通道的临床诊疗和新药发现提供新策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号