首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
王宝增 《植物研究》2013,33(6):752-757
许多植物由营养生长向生殖生长的转换都是由日照长度控制的,而植物叶片可感知日长信号并诱导成花素的合成。成花素从韧皮部运输到茎顶端,使顶端分生组织基因表达发生变化进而成花。其中,FT作为成花素的主要组分,在该转换过程中处于核心地位。本文综合近年的研究,介绍成花素及其作用机理。  相似文献   

2.
光周期途径植物开花决定关键基因FT   总被引:4,自引:0,他引:4  
随着分子生物学的快速发展,大量与光周期途径开花相关的基因已经被发现和克隆,刀(FLOWER-ING LOCUS T)是光周期途径植物开花时间决定关键基因,并认为刀基因表达产物可能就是人们长期追寻的开花刺激物质,这种开花刺激物质经过叶片到茎尖的长距离运输,最终引起茎顶端开花起始.目前已在多种植物中分离出FT同源基因,并通过转基因证明FT基因的表达可促进植物提早开花.本文对国内外关于FT基因家族的研究进展进行综述,旨在为进一步深入研究FT基因功能提供参考.  相似文献   

3.
开花是高等植物发育过程中一个非常重要的转化过程,它能够保证植物的正常发育和后代的延续,并且有重要的农业价值和观赏价值[1].开花时间的调控是一个非常复杂的过程,受到自身发育信号和外部环境因素的共同影响[2-3].FLC是拟南芥开花调节过程中的中心抑制因子,其在拟南芥顶端分生组织和叶片维管束的伴胞细胞中均有表达,并且这两个部位的FLC对开花时间都有重要的调节作用[4].目前已知的多数影响开花的通路都通过调节顶端FLC的表达来调控植物开花时间,关于伴胞细胞中的FLC如何被调控的研究还非常少[1, 3]. 在动植物中都存在一类具有JmjC结构域的蛋白质,是一类保守的组蛋白脱甲基化酶[5].我们实验室最近的工作表明,JMJ18是一个受植物自身发育调节的H3K4脱甲基化酶,JMJ18主要在伴胞细胞中表达,通过特异调节伴胞细胞中的FLC调控植物开花时间[6]. Yang等[6]实验证实在体外全长的JMJ18可以特异性地以H3K4m3的多肽为底物,脱掉其上一个甲基生成H3K4m2.在拟南芥中,JMJ18主要在伴胞细胞中表达,并且表达水平受到植物自身发育进程的调控[4].JMJ18功能缺失突变体呈现弱的晚花表型,而JMJ18的超表达植株呈现明显的早花表型,说明JMJ18参与了拟南芥开花时间的调控[4].尽管多个具有JmjC结构域的组蛋白脱甲基化酶,如 JMJ14、ELF6/JMJ11、REF6/JMJ12等都参与了拟南芥开花时间的调节,但是机制都不太清楚[5, 7],并且目前没有发现可以直接调控FLC的JmjC蛋白.Yang等的实验证实JMJ18可以结合到FLC的染色质上,通过降低FLC的染色质H3K4m3和H3K4m2修饰抑制FLC表达.FLC表达水平的降低导致FT表达的释放,促进FT在伴胞细胞中积累.积累的FT从伴胞细胞进入筛管组织,进而运输到顶端分生组织,与顶端分生组织特异性表达的bZIP转录因子FD直接相互作用,通过调节下游基因SOC1和AP1调控植物开花进程(图1). 最近的研究发现,植物开花时间除了受到春化作用、自主途径、光周期途径、GA途径等调控以外,还可以通过自身年龄衡量因子miR156和其靶基因SQUAMOSA PROMOTER BINDING-LIKE (SPLs)调节开花进程[8].Yang等实验证实:JMJ18主要在韧皮部的伴胞细胞表达.并且同miR156类似,在植物营养生长时期,JMJ18随着发育进程的深入表达水平逐渐升高.SUC2启动子驱动JMJ18在维管伴胞细胞中表达时也出现早花表型并且依赖于FT.这些研究结果表明,同miR156类似,JMJ18受植物自身发育调节,也可能作为自身年龄衡量因子调控植物开花时间,不同点是JMJ18是通过组蛋白修饰直接调节FLC表达调控开花时间的自身年龄衡量因子.即可能有两条感受自身年龄的途径:miR156-SPLs和JMJ18-FLC/MAFs途径,让人感兴趣的是两个因子都是表观遗传调控因子,而且在每个途径中均是前者负调控后者,而且后者均为一个转录因子基因家族,这两个途径最后都调控FT表达.这两个途径之间的关系也是一个有待于研究的科学问题,这可能会对于我们理解自身年龄衡量因子在植物开花进程中的作用有一定的启示.  相似文献   

4.
开花是植物从营养生长转变为生殖生长的重要时期,而开花调控成为近年来植物分子生物学研究的热点。在目前已有的研究中,调控拟南芥开花的基因网络已经发展成一个包含串扰(Crosstalk)、反馈(Feedback)和冗余(Redundancy)的复杂网络,这个网络通过开花整合子来与其他发育过程紧密结合。以调节开花的遗传途径作为基础,重点讨论了顶端分生组织中的信号积累、花发育的时空调节、开花相关基因在拟南芥开花时间或花发育过程以外的其他过程中的功能,并对开花调控网络的深入研究进行了展望。  相似文献   

5.
茎顶端分生组织在植物发育过程中的保持、转变和逆转   总被引:1,自引:0,他引:1  
顶端分生组织(shoot apical meristems,SAM)为产生新的器官和组织而不断提供新的细胞,它的活性依赖于平衡分生组织细胞的增殖和器官发生之间关系的调控基因.来自不具备光合能力的顶端分生组织的细胞可形成具有光合能力的营养器官.在从营养生长到生殖发育的转变过程中,茎顶端分生组织,转变为花序分生组织,最终形成花分生组织.在进入开花决定状态以前,SAM的状态很大程度上受到环境信号和转录调控因子的影响.以模式植物拟南芥为主,对在顶端分生组织的保持和转变中复杂同时又有差异的基因调控网络进行讨论.在花和花序分生组织逆转过程中,SAM中的细胞也受到相关基因的调控,且表达方式存在明显的时空差异.因此,具有决定性的和未决定性双重特性的分生组织之间的转变和相互协调,对于器官发生和形态建成起到至关重要的作用.  相似文献   

6.
以拟南芥野生型(C24)和T-DNA插入诱发的突变体(155系)为材料,通过表型分析、组织切片、GUS基因表达的组织化学定位等研究方法对155系的形态结构和生长发育进行了较为细致的观察分析,结果发现:(1)T-DNA插入诱发的155系突变体植株矮化,叶片等器官体积减小,营养生长阶段延长,发育较C24缓慢;(2)同一时期155系的茎顶端分生组织面积较C24减小,顶端平坦,细胞层数减少,两侧叶原基基部之间的距离缩短,呈现出发育迟缓、从茎顶端分生组织向花分生组织转变延迟等特征;(3)GUS基因特异性地在155系茎顶端分生组织和维管组织中表达.结果表明,T-DNA诱捕基因可能在茎顶端分生组织中发挥作用,由于T-DNA的插入使该基因的功能受到了影响,进而影响了155系中茎顶端分生组织的发育模式,产生了155系的一系列表型改变.  相似文献   

7.
开花现象是绿色开花植物所特有的,对其机理的研究一直是生物学学家极为关注的研究领域。成花素假说认为植物叶片在光的诱导下产生一种叫成花素(Flofigen)的分子,成花素可以运输到植物茎顶端诱导花芽的分化,但是成花素的化学本质一直没有被鉴定。最近发现成花素是一种叫做FT的蛋白分子,该分子广泛存在于植物界参与花器官的诱导,至此,成花素假说不再是假说。回顾了成花素假说形成的历史,介绍成花素发现的最新成果。  相似文献   

8.
茎尖分生组织是位于植物顶端具有持续分化能力的组织,通过细胞分裂、分化产生茎、叶和花等器官,形成植株地上部分。茎尖分生组织在分化过程中受外界环境因素、内源激素水平和分子调控等影响,表现出明显变化。该文综合国内外近年来有关茎尖分生组织分化调控的研究进展,从茎尖分生组织的形态结构和环境影响因素,以及激素调控和分子调控等方面,对茎尖分生组织分化活动的研究进行综述,并对目前研究现状存在问题及未来研究方向进行了分析和展望。  相似文献   

9.
大豆开花基因GmCO和GmFT的克隆及表达   总被引:1,自引:0,他引:1  
为了研究大豆光周期反应是否受开花基因CO(CONSTANS)和FT(FLOWERING LOCUS T)调控,采用同源序列法从大豆中分离了CO和FT的同源物GmCO和GmFT.GmCO和GmFT分别编码151和109个氨基酸,与水稻和拟南芥中相关蛋白的氨基酸序列同源性达到70%以上.通过RT-PCR分析GmCO和GmFT在短日照(short daylength,SD)、自然光照(natural light,NL)和长日照(long daylength,LD)处理大豆不同发育阶段叶片中的表达发现,GmCO在LD处理大豆早期发育的叶片中高丰度表达,GmFT在SD和NL处理大豆开花时期的叶片中高丰度表达.上述结果表明,GmCO和GmFT的表达与大豆开花时间及光照长度密切相关,且GmCO抑制GmFT的表达.  相似文献   

10.
植物胚后发育主要分为营养生长和生殖生长两个阶段,营养生长阶段又包含幼龄期和成熟期。叶片远轴面表皮毛的出现是拟南芥营养生长时相转变的形态学标志。研究利用拟南芥晚花突变体co-2和ft-1,研究了光周期途径晚花突变对营养生长时相转变(vegetative phase change,VPC)的影响。形态学指标测定和茎端分生组织解剖特征表明,光周期途径相关的两种晚花突变体比野生型Ler晚开花近一倍的时间,莲座叶的数目也比野生型多了一倍;野生型叶片远轴面表皮毛多出现在第4片真叶上,co-2和ft-1多出现在第5片真叶上,茎顶端分生组织高宽比变异趋势亦然,说明拟南芥晚花突变延迟了营养生长时相转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号