首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  国内免费   4篇
  2021年   1篇
  2020年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
动植物系统研究表明,钙调素不仅在结合钙离子时调节多种靶酶或靶蛋白的活性,而且没有钙离子结合时,还可以通过结合钙不依赖的钙调素结合蛋白,发挥多种生物学作用.然而,目前却没有体内分析钙调素与钙不依赖钙调素结合蛋白相互作用的方法.首先,采用定点突变的方式,得到了拟南芥钙调素亚型2的多个突变基因mCaM2,随后,大肠杆菌重组表达突变蛋白的电泳迁移率及45Ca2+覆盖分析表明,得到了编码失去钙结合能力的钙调素的突变基因mCaM21234, mCaM21234突变钙调素中所有4个钙结合EF-hand结构域中的关键氨基酸谷氨酸均突变为谷氨酰胺.在酵母双杂交体系中,作为诱饵蛋白的突变钙调素mCaM21234与我们前期体外方法报道的钙不依赖性钙调素结合蛋白AtIQD26存在相互作用.这将为钙不依赖性钙调素结合蛋白提供有用的体内研究工具,有利于我们全面认识钙-钙调素-钙调素结合蛋白信号途径.  相似文献   
2.
各种植物的同一种营养器官行使相同的功能,在形态结构上就有共同的特性。但有些植物在进化过程中,其营养器官适应不同的环境而行使特定的生理功能,其形态结构就发生变异,历经若干世代后,变异愈来愈明显,成为该种植物的遗传特性,这种现象称为器官的变态。营养器官的变态现象在蔬菜植物中普遍存在,现将常见蔬菜植物的营养器官变态现象分述如下: 变态根蔬菜植物的变态根主要是适应于贮藏大量的养分,如淀粉、糖分、矿物质等。通常把变态根分为肉质根和块根两种。  相似文献   
3.
目的:探讨世居3 200 m高原环境下20~40岁健康人群逐级递增负荷运动测试(Conconi)心率拐点(HRDP)与乳酸恢复能力、肺功能关联性。方法:以225名世居3 200 m高原的20~40岁健康人群为研究对象,按照年龄区分为20~25岁组(男26,女25)、26~30岁组(男32,女28)、31~35岁组(男29,女33)及36~40岁组(男22,女30),通过改良后Conconi测试前、测试中及测试后恢复期心率、血乳酸变化规律评价机体HRDP强度、心率恢复能力及血乳酸恢复能力。结果:①受试者心率水平随运动强度提高呈上升趋势,且运动后恢复期心率水平呈现下降趋势,世居高原男性Conconi测试中心率水平显著低于女性(P<0.05);同年龄阶段下,男性HRDP出现较晚,女性HRDP出现较早;同性别阶段下,男性组随年龄上升HRDP出现时间提前,女性组该现象不显著;HRDPspeed随年龄上升存在下降趋势。②随年龄上升,受试者血乳酸拐点浓度逐渐降低,但低年龄组与高年龄组间不存在显著差异;男性Conconi测试中血乳酸水平显著低于女性(P<0.05)。③随年龄上升各性别组FVC、MVV、FEV1及FEV1/FVC水平均呈下降趋势,男性组以上各数据均显著高于同年龄段女性组(P<0.05)。④负荷-心率曲线及心率-血乳酸拟合曲线显示,男性组相关系数依次为0.8345、0.8954、0.8680及0.8892;女性组相关系数依次为 0.9318、0.9661、0.9663及0.9599。各性别、年龄组HRDP值均与其MVV水平存在显著关联(P<0.05),除男性组36-40岁受试者外,其余各性别、年龄组肺功能与乳酸消除速率亦存在显著关联(P<0.05)。结论:世居3 200 m高原20~40岁健康人群运动心率反应规律及呼吸系统机能存在年龄及性别差异,HRDP与乳酸恢复能力、肺功能间存在显著关联,上述指标可以作为评估世居高原健康成人有氧运动耐力能力的有效手段。  相似文献   
4.
开花是高等植物发育过程中一个非常重要的转化过程,它能够保证植物的正常发育和后代的延续,并且有重要的农业价值和观赏价值[1].开花时间的调控是一个非常复杂的过程,受到自身发育信号和外部环境因素的共同影响[2-3].FLC是拟南芥开花调节过程中的中心抑制因子,其在拟南芥顶端分生组织和叶片维管束的伴胞细胞中均有表达,并且这两个部位的FLC对开花时间都有重要的调节作用[4].目前已知的多数影响开花的通路都通过调节顶端FLC的表达来调控植物开花时间,关于伴胞细胞中的FLC如何被调控的研究还非常少[1, 3]. 在动植物中都存在一类具有JmjC结构域的蛋白质,是一类保守的组蛋白脱甲基化酶[5].我们实验室最近的工作表明,JMJ18是一个受植物自身发育调节的H3K4脱甲基化酶,JMJ18主要在伴胞细胞中表达,通过特异调节伴胞细胞中的FLC调控植物开花时间[6]. Yang等[6]实验证实在体外全长的JMJ18可以特异性地以H3K4m3的多肽为底物,脱掉其上一个甲基生成H3K4m2.在拟南芥中,JMJ18主要在伴胞细胞中表达,并且表达水平受到植物自身发育进程的调控[4].JMJ18功能缺失突变体呈现弱的晚花表型,而JMJ18的超表达植株呈现明显的早花表型,说明JMJ18参与了拟南芥开花时间的调控[4].尽管多个具有JmjC结构域的组蛋白脱甲基化酶,如 JMJ14、ELF6/JMJ11、REF6/JMJ12等都参与了拟南芥开花时间的调节,但是机制都不太清楚[5, 7],并且目前没有发现可以直接调控FLC的JmjC蛋白.Yang等的实验证实JMJ18可以结合到FLC的染色质上,通过降低FLC的染色质H3K4m3和H3K4m2修饰抑制FLC表达.FLC表达水平的降低导致FT表达的释放,促进FT在伴胞细胞中积累.积累的FT从伴胞细胞进入筛管组织,进而运输到顶端分生组织,与顶端分生组织特异性表达的bZIP转录因子FD直接相互作用,通过调节下游基因SOC1和AP1调控植物开花进程(图1). 最近的研究发现,植物开花时间除了受到春化作用、自主途径、光周期途径、GA途径等调控以外,还可以通过自身年龄衡量因子miR156和其靶基因SQUAMOSA PROMOTER BINDING-LIKE (SPLs)调节开花进程[8].Yang等实验证实:JMJ18主要在韧皮部的伴胞细胞表达.并且同miR156类似,在植物营养生长时期,JMJ18随着发育进程的深入表达水平逐渐升高.SUC2启动子驱动JMJ18在维管伴胞细胞中表达时也出现早花表型并且依赖于FT.这些研究结果表明,同miR156类似,JMJ18受植物自身发育调节,也可能作为自身年龄衡量因子调控植物开花时间,不同点是JMJ18是通过组蛋白修饰直接调节FLC表达调控开花时间的自身年龄衡量因子.即可能有两条感受自身年龄的途径:miR156-SPLs和JMJ18-FLC/MAFs途径,让人感兴趣的是两个因子都是表观遗传调控因子,而且在每个途径中均是前者负调控后者,而且后者均为一个转录因子基因家族,这两个途径最后都调控FT表达.这两个途径之间的关系也是一个有待于研究的科学问题,这可能会对于我们理解自身年龄衡量因子在植物开花进程中的作用有一定的启示.  相似文献   
5.
研究了3种植物生长调节剂苯基噻二唑基脲(TDZ)、6-苄基腺嘌呤(6-BA)、萘乙酸(NAA)对密叶绢藓[Entodon challengeri(Paris)Cardot]孢子萌发、原丝体发育及芽体发生的影响,并对整个发育过程进行了显微观察和照相,结果表明:(1)3种植物生长调节剂对密叶绢藓孢子萌发影响不显著;(2)在原丝体发育阶段,1.0 mg/LNAA对原丝体初期的发育促进效果显著,0.4 mg/L TDZ对原丝体发育中期分枝的形成促进效果显著,6-BA处理效果不显著;(3)3种植物生长调节剂单独处理均促进芽体的发生,但0.4 mg/L TDZ效果最佳。而1.5 mg/L 6-BA+TDZ组合处理效果更加显著;(4)芽体的发生数量与芽体的长势无正相关性。  相似文献   
6.
科尔沁沙地差巴嘎蒿群落及种群生态特征   总被引:1,自引:0,他引:1  
对科尔沁不同类型沙地上差巴嘎蒿群落内物种重要值、多样性等生态特征进行分析后,将其划分为3个类型:差巴嘎蒿 1年生植物群聚、差巴嘎蒿 禾草类群丛、冷蒿 黄蒿+禾草类群丛,分别分布于流动、半固定和固定沙地上.随着沙地基质固定程度的增加,差巴嘎蒿群落由差巴嘎蒿-1年生植物群聚(先锋群落、盖度<10%、多样性指数0.33)演替到差巴嘎蒿-禾草类群丛(盖度30%~35%、多样性指数0.56)再演替到冷蒿 黄蒿+禾草类群丛(草原群落、盖度40%~45%、多样性指数0.59).在差巴嘎蒿群落演替过程中,差巴嗄蒿种群年龄结构的变化趋势是:在流动沙地上为增长型;在半固定和固定沙地上为衰退型.人工种植5年后差巴嘎蒿种群年龄结构为增长型,人工种植18年后为稳定型.  相似文献   
7.
科尔沁沙地差巴嘎蒿种群生态位适宜度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
以生长在科尔沁沙地的差巴嘎蒿(Artemisia halodendron)为研究对象,对其在不同类型沙地上的综合活力指数和生态位适宜度进行计算,主要结论如下:1)在生长旺季,差巴嘎蒿种群综合活力指数随着沙地的固定显著下降。2)在同一生长季内,综合生态位适宜度表现为半固定沙地>固定沙地和流动沙地;水分生态位适宜度表现为流动沙地>半固定沙地>固定沙地。随着土壤含水量的变化,土壤水分的限制土层深度也有所不同:7月各类型沙地均为15~30 cm土层;8月随着雨水的下渗,限制土层也有所加深,为45~60 cm土层;9月除流动沙地为15~30 cm外,半固定沙地和固定沙地均为30~45 cm。3)在同一生长季内的不同生境上种群的限制因子(NFmin)不同:在流动沙地上为土壤有机质,而在半固定沙地和固定沙地上为土壤含水量,且土壤有机质和土壤水分的配置关系直接影响综合生态位适宜度值的高低。在一定范围内,二者的比值可直接反映有机质对植物细根的有效性,同时种群通过调节细根生长状况来适应限制因子间的配置关系。  相似文献   
8.
钙调素结合蛋白的研究有助于探明钙调素介导的信号转导途径.以拟南芥钙调素亚型2(ACaM2)为钓饵,重组共转化法构建并筛选了酵母双杂交文库.复筛后得到一个阳性克隆.序列测定及分析表明,分离的阳性克隆中包含一个编码钙调素结合蛋白AtIQD26的cDNA片段.凝胶覆盖实验进一步表明,AtIQD26在1 mmol/L Ca2 或1 mmol/L EGTA条件下都能与钙调素结合,说明其存在不依赖于Ca2 的CaM结合特性.GUS染色分析表明,AtIQD26具有普遍的组织表达特性,尤其是在新生的组织中表达量较大;融合荧光蛋白定位显示,AtIQD26在细胞核与质膜附近有分布.AtIQD26与钙调素空间分布的相似性,预示着它们在植物生长发育过程中可能共同发挥作用.  相似文献   
9.
为获取其孢子萌发类型与该属植物系统发育、生态选择以及生殖策略选择的相关性,该研究通过室内人工培养的方式,在微米量级下观察并描述了碎米藓属(Fabronia)碎米藓(F.pusilla)和东亚碎米藓(F.matsumurae)两种藓类植物孢子萌发、原丝体发育和配子体发生的过程。结果表明:(1)两种藓类植物孢子均为壁外萌发,均产生由1~15个半圆球形细胞组成的绿丝体(chloronema)短枝;(2)碎米藓在绿丝体顶端分化产生轴丝体细胞,东亚碎米藓未分化产生轴丝体(caulonema);(3)两种藓类植物配子体原始细胞均在绿丝体上分化产生。参照Nishida对藓类植物孢子萌发型划分标准,分析并确定了碎米藓属两种藓类植物孢子萌发型均为蓑藓型(Maromitrium-type),为碎米藓属的系统分类提供了发育学证据。  相似文献   
10.
研究了3种植物生长调节剂苯基噻二唑基脲(TDZ)、6-苄基腺嘌呤(6-BA)、萘乙酸(NAA)对密叶绢藓[Entodon challengeri(Paris)Cardot]孢子萌发、原丝体发育及芽体发生的影响,并对整个发育过程进行了显微观察和照相,结果表明:(1)3种植物生长调节剂对密叶绢藓孢子萌发影响不显著;(2)在原丝体发育阶段,1.0 mg/LNAA对原丝体初期的发育促进效果显著,0.4 mg/L TDZ对原丝体发育中期分枝的形成促进效果显著,6-BA处理效果不显著;(3)3种植物生长调节剂单独处理均促进芽体的发生,但0.4 mg/L TDZ效果最佳。而1.5 mg/L 6-BA TDZ组合处理效果更加显著;(4)芽体的发生数量与芽体的长势无正相关性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号