首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins.  相似文献   

2.
Genetic diversity has been analyzed in 22 ethnic groups of the Caucasus on the basis of data on Y-chromosome and mitochondrial DNA (mtDNA) markers, as well as genome-wide data on autosomal single-nucleotide polymorphisms (SNPs). It has been found that the West Asian component is prevailing in all ethnic groups studied except for Nogays. This Near Eastern ancestral component has proved to be characteristic of Caucasian populations and almost entirely absent in their northern neighbors inhabiting the Eastern European Plain. Turkic-speaking populations, except Nogays, did not exhibit an increased proportion of Eastern Eurasian mtDNA or Y-chromosome haplogroups compared to some Abkhaz-Adyghe populations (Adygs and Kabardians). Genome-wide SNP analysis has also shown substantial differences of Nogays from all other Caucasian populations studied. However, the characteristic difference of Nogays from other populations of the Caucasus seems somewhat ambiguous in terms of the R1a1a-M17(M198) and R1b1b1-M73 haplogroups of the Y chromosome. The state of these haplogroups in Turkic-speaking populations of the Caucasus requires further study.  相似文献   

3.
Linguistic evidence suggests that West Asia and Central Asia have been the two major geographical sources of genes in the contemporary Indian gene pool. To test the nature and extent of similarities in the gene pools of these regions we have collected DNA samples from four ethnic populations of northern India, and have screened these samples for a set of 18 Y-chromosome polymorphic markers (12 unique event polymorphisms and six short tandem repeats). These data from Indian populations have been analysed in conjunction with published data from several West Asian and Central Asian populations. Our analyses have revealed traces of population movement from Central Asia and West Asia into India. Two haplogroups, HG-3 and HG-9, which are known to have arisen in the Central Asian region, are found in reasonably high frequencies (41.7% and 14.3% respectively) in the study populations. The ages estimated for these two haplogroups are less in the Indian populations than those estimated from data on Middle Eastern populations. A neighbour-joining tree based on Y-haplogroup frequencies shows that the North Indians are genetically placed between the West Asian and Central Asian populations. This is consistent with gene flow from West Asia and Central Asia into India.  相似文献   

4.
Previous studies have shown that India's vast coastal rim played an important role in the dispersal of modern humans out of Africa but the Karnataka state, which is located on the southwest coast of India, remains poorly characterized genetically. In the present study, two Dravidian populations, namely Lingayat (N = 101) and Vokkaliga (N = 102), who represent the two major communities of the Karnataka state, were examined using high-resolution analyses of Y-chromosome single nucleotide polymorphisms (Y-SNPs) and seventeen short tandem repeat (Y-STR) loci. Our results revealed that the majority of the Lingayat and Vokkaliga paternal gene pools are composed of four Y-chromosomal haplogroups (H, L, F* and R2) that are frequent in the Indian subcontinent. The high level of L1-M76 chromosomes in the Vokkaligas suggests an agricultural expansion in the region, while the predominance of R1a1a1b2-Z93 and J2a-M410 lineages in the Lingayat indicates gene flow from neighboring south Indian populations and West Asia, respectively. Lingayat (0.9981) also exhibits a relatively high haplotype diversity compared to Vokkaliga (0.9901), supporting the historical record that the Lingayat originated from multiple source populations. In addition, we detected ancient lineages such as F*-M213, H*-M69 and C*-M216 that may be indicative of genetic signatures of the earliest settlers who reached India after their migration out of Africa.  相似文献   

5.
Molecular anthropological studies of the populations in and around East Asia have resulted in the discovery that most of the Y-chromosome lineages of East Asians came from Southeast Asia. However, very few Southeast Asian populations had been investigated, and therefore, little was known about the purported migrations from Southeast Asia into East Asia and their roles in shaping the genetic structure of East Asian populations. Here, we present the Y-chromosome data from 1,652 individuals belonging to 47 Mon-Khmer (MK) and Hmong-Mien (HM) speaking populations that are distributed primarily across Southeast Asia and extend into East Asia. Haplogroup O3a3b-M7, which appears mainly in MK and HM, indicates a strong tie between the two groups. The short tandem repeat network of O3a3b-M7 displayed a hierarchical expansion structure (annual ring shape), with MK haplotypes being located at the original point, and the HM and the Tibeto-Burman haplotypes distributed further away from core of the network. Moreover, the East Asian dominant haplogroup O3a3c1-M117 shows a network structure similar to that of O3a3b-M7. These patterns indicate an early unidirectional diffusion from Southeast Asia into East Asia, which might have resulted from the genetic drift of East Asian ancestors carrying these two haplogroups through many small bottle-necks formed by the complicated landscape between Southeast Asia and East Asia. The ages of O3a3b-M7 and O3a3c1-M117 were estimated to be approximately 19 thousand years, followed by the emergence of the ancestors of HM lineages out of MK and the unidirectional northward migrations into East Asia.  相似文献   

6.
贵州瑶族3支系Y-DNA及线粒体DNA序列多态性分析   总被引:4,自引:0,他引:4  
褚迅  单可人  文波  齐晓岚  李毅  吴昌学  刘烜  赵艳  任锡麟  金力 《遗传》2006,28(2):153-158
采用PCR-RFLP技术,通过观察由12个单核苷酸多态位点(SNPs)组成的Y染色体单倍型及由9个多态位点组成的线粒体DNA单倍型在贵州瑶族中的分布,分析贵州瑶族父系及母系遗传结构,探讨其起源及迁徙。结果显示,97份男性样本分别属于H7、H8、H9、H11 4种Y-DNA单倍型,苗瑶语系特异Y-DNA单倍型H7的平均频率为92.4%;通过对线粒体DNA基因分型,得到8种单倍型,可归入B4、B5、D4、D5和N*单倍型类群中,CoⅡ/tRNALys区域间的9bp缺失平均频率为58.2%。结果提示贵州瑶族父系遗传结构单一,具有典型的苗瑶族群特征,又存在与其他族群的融合。母系遗传结构相对复杂,9 bp缺失是贵州瑶族的母系遗传结构特征。   相似文献   

7.
Two tribal groups from southern India--the Chenchus and Koyas--were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at Indian-specific branches of haplogroups M and N that cover populations of different social rank from all over the subcontinent. Coalescence times suggest early late Pleistocene settlement of southern Asia and suggest that there has not been total replacement of these settlers by later migrations. H, L, and R2 are the major Indian Y-chromosomal haplogroups that occur both in castes and in tribal populations and are rarely found outside the subcontinent. Haplogroup R1a, previously associated with the putative Indo-Aryan invasion, was found at its highest frequency in Punjab but also at a relatively high frequency (26%) in the Chenchu tribe. This finding, together with the higher R1a-associated short tandem repeat diversity in India and Iran compared with Europe and central Asia, suggests that southern and western Asia might be the source of this haplogroup. Haplotype frequencies of the MX1 locus of chromosome 21 distinguish Koyas and Chenchus, along with Indian caste groups, from European and eastern Asian populations. Taken together, these results show that Indian tribal and caste populations derive largely from the same genetic heritage of Pleistocene southern and western Asians and have received limited gene flow from external regions since the Holocene. The phylogeography of the primal mtDNA and Y-chromosome founders suggests that these southern Asian Pleistocene coastal settlers from Africa would have provided the inocula for the subsequent differentiation of the distinctive eastern and western Eurasian gene pools.  相似文献   

8.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

9.
A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.  相似文献   

10.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

11.
The Himalayas as a directional barrier to gene flow   总被引:1,自引:0,他引:1       下载免费PDF全文
High-resolution Y-chromosome haplogroup analyses coupled with Y-short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal--including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as "Kathmandu" subsequently)--as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman-speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134-derived chromosomes, whose Y-STR-based age (+/-SE) was estimated at 8.1+/-2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives--namely, D1-M15 and D3-P47 in Tibet--involved two different demographic events (5.1+/-1.8 and 11.3+/-3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal indicates that the Himalayas have been permeable to dispersals from the east. These genetic patterns suggest that this cordillera has been a biased bidirectional barrier.  相似文献   

12.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

13.
We extracted DNA from two skeletons belonging to the Sytho‐Siberian population, which were excavated from the Sebÿstei site (dating back 2,500 years) in the Altai Republic (Central Asia). Ancient DNA was analyzed by autosomal short tandem repeats (STRs) and by the sequencing of the hypervariable region 1 (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed that these two skeletons were not close relatives. Moreover, their haplogroups were characteristic of Asian populations. Comparison with the haplogroup of 3,523 Asian and American individuals linked one skeleton with a putative ancestral paleo‐Asiatic population and the other with Chinese populations. It appears that the genetic study of ancient populations of Central Asia brings important elements to the understanding of human population movements in Asia. Am J Phys Anthropol, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

14.
Hmong-Mien (H-M) is a major language family in East Asia, and its speakers distribute primarily in southern China and Southeast Asia. To date, genetic studies on H-M speaking populations are virtually absent in the literature. In this report, we present the results of an analysis of genetic variations in the mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS1) region and diagnostic variants in the coding regions in 537 individuals sampled from 17 H-M populations across East Asia. The analysis showed that the haplogroups that are predominant in southern East Asia, including B, R9, N9a, and M7, account for 63% (ranging from 45% to 90%) of mtDNAs in H-M populations. Furthermore, analysis of molecular variance (AMOVA), phylogenetic tree analysis, and principal component (PC) analysis demonstrate closer relatedness between H-M and other southern East Asians, suggesting a general southern origin of maternal lineages in the H-M populations. The estimated ages of the mtDNA lineages that are specific to H-M coincide with those based on archeological cultures that have been associated with H-M. Analysis of genetic distance and phylogenetic tree indicated some extent of difference between the Hmong and the Mien populations. Together with the higher frequency of north-dominating lineages observed in the Hmong people, our results indicate that the Hmong populations had experienced more contact with the northern East Asians, a finding consistent with historical evidence. Moreover, our data defined some new (sub-)haplogroups (A6, B4e, B4f, C5, F1a1, F1a1a, and R9c), which will direct further efforts to improve the phylogeny of East Asian mtDNAs.  相似文献   

15.
Although previous studies have characterized the genetic structure of populations from Haiti and Jamaica using classical and autosomal STR polymorphisms, the patrilineal influences that are present in these countries have yet to be explored. To address this lacuna, the current study aims to investigate, for the first time, the potential impact of different ancestral sources, unique colonial histories, and distinct family structures on the paternal profile of both groups. According to previous reports examining populations from the Americas, island-specific demographic histories can greatly impact population structure, including various patterns of sex-biased gene flow. Also, given the contrasting autosomal profiles provided in our earlier study (Simms et al.: Am J Phys Anthropol 142 (2010) 49-66), we hypothesize that the degree and directionality of gene flow from Europeans, Africans, Amerindians, and East Asians are dissimilar in the two countries. To test this premise, 177 high-resolution Y-chromosome binary markers and 17 Y-STR loci were typed in Haiti (n = 123) and Jamaica (n = 159) and subsequently utilized for phylogenetic comparisons to available reference collections encompassing Africa, Europe, Asia (East and South), and the New World. Our results reveal that both studied populations exhibit a predominantly South-Saharan paternal component, with haplogroups A1b-V152, A3-M32, B2-M182, E1a-M33, E1b1a-M2, E2b-M98, and R1b2-V88 comprising 77.2% and 66.7% of the Haitian and Jamaican paternal gene pools, respectively. Yet, European derived chromosomes (i.e., haplogroups G2a*-P15, I-M258, R1b1b-M269, and T-M184) were detected at commensurate levels in Haiti (20.3%) and Jamaica (18.9%), whereas Y-haplogroups indicative of Chinese [O-M175 (3.8%)] and Indian [H-M69 (0.6%) and L-M20 (0.6%)] ancestry were restricted to Jamaica.  相似文献   

16.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.  相似文献   

17.
The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.  相似文献   

18.
克里雅人、罗布人、刀郎人是生活在我国西部边疆沙漠腹地、人口稀少的隔离人群。基于对这三个隔离人群179人Y染色体全序列的测序和分型,得到每个个体Y染色体所有突变的SNP位点和隶属的单倍群,并对各单倍群类型和频率进行了分析。以探知三个隔离人群的Y染色体遗传结构和遗传多样性。通过研究结果表明:克里雅人群检出12个单倍群,高频单倍群有J2a1b1(25.64%),R1a1a1b2a(20.51%),R2a(17.95%),R1a1a1b2a2(15.38%);罗布人群检出16个单倍群,高频单倍群有J2a1(43.75%),J2a2(14.06%),R2(9.38%),L1c(7.81%);刀郎人群检出40个单倍群,高频单倍群有R1b1a1a1(9.21%),R1a1a1b2a1a(7.89%),R1a1a1b2a2b(6.58%),C3c1(6.58%).三个隔离人群与维吾尔族、蒙古族、撒拉族亲缘关系较近;在单倍群类型和频率上与维吾尔族最接近且无显著性差异(f=0.833,p=0.367)。此外,三个隔离人群单倍群类型和频率显示明显的亚欧混合现象,经过长期基因融合使其具有中亚人群的典型特征,适用于法医遗传学。  相似文献   

19.
Polymorphism of mtDNA was examined in five ethnic populations that belong to the Turkic language group and inhabit the territory of the Altai-Sayan upland (N = 1007). Most of the haplogroups identified in the examined populations belonged to East Eurasian lineages. In all five populations, only three haplogroups, C, D, and F, were prevailing. The frequencies of the other six haplogroups (A, B, G, M, Y, and Z) varied in the range from 1.1 to 6.5%. Among West Eurasian haplogrous, the most common were haplogroups H, J, T, and U. An analysis of Y-chromosome haplogroups in 407 individuals showed that only two haplogroups, N* and R1a1, were present in all five populations examined. Moreover, in different ethnic groups, the highest frequencies were observed for C-M130, N-P43, and N-Tat haplogroups. The differences in the distribution patterns of ancient West Eurasian and East Eurasian haplotypes from Gorny Altai in the present-day populations from the northern part of Eurasia revealed can be explained in terms of the multistage expansion of humans across these territories. The ubiquity of haplotypes from haplogroup H and cluster U across the wide territory from the Yenisei River basin to the Atlantic Ocean can indicate directional human expansion, which most likely occurred out of Central Asia as early as in the Paleolithic era, and took place in several waves with the glacier retreat.  相似文献   

20.
Ancestral Asian source(s) of new world Y-chromosome founder haplotypes   总被引:15,自引:0,他引:15       下载免费PDF全文
Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号