首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To predict changes in vegetation as a result of acidification in shallow Dutch lakes a mathematical model was formulated which describes the growth ofLittorella uniflora andJuncus bulbosus, species characteristic for non-acidified and acidified situations, respectively. The two species compete for light, CO2 and nutrients. The model integrates current knowledge about the ecophysiology of the species. The results generated by the model are similair to field data concerning dominance of the species in different habitats.L. uniflora is able to grow well under environmental conditions associated with acidification, as long as it is not outcompeted byJ. bulbosus. The competitive advantage of morphological adaptions of the macrophyte species are discussed in relation to the model results.  相似文献   

3.
In The Netherlands, there has been a dramatic decline during the last 30 years in the number of stands belonging to the phytosociological alliance Littorellion. Generally, the communities classified within this alliance occur in poorly buffered, oligotrophic waters, with very low phosphate, nitrogen and carbon dioxide levels in the water layer and considerably higher nutrient levels in the sediment. The plant species dominating these communities are isoetids such as Litoorella uniflora (L.) Aschers., Lobelia dortmanna L. and Isoetes lacustris L., which show various adaptations to make successful growth possible under these conditions.Field observations showed that the water where Littorella uniflora had disappeared or strongly decreased could be divided into two groups. A major group (77%) was characterized by the presence of submerged Juncus bulbosus L. and/or Sphagnum species. These water appeared to be strongly acidified (pH < 4.5) and had increased nitrogen levels with ammonium as the dominant N-source. Within this group, the waters with luxuriant growth of Juncus bulbosus and/or Sphagnum spp. had strongly increased carbon dioxide levels in both sediment and water.Different types of experiments proved causal relationships between the observed changes in macrophytes and the changed physico-chemical parameters. Ecophysiological experiments showed that Juncus bulbosus lacks the typical adaptations of the isoetid plant species, i.e. it uses very low amounts of sediment-CO2 and releases only a little oxygen from the roots. However, Juncus bulbosus is more able than Littorella uniflora to use CO2 from the water layer. From the nutrient-uptake experiments, the decreased nitrate and increased ammonium levels seem to be favourable to Juncus bulbosus. The culture experiments clearly demonstrated that the biomass of Juncus bulbosus only increased strongly when the sediment was poorly buffered and the pH of water was low. When combining factors like CO2 enrichment of the sediment, with and without phosphate, and/or ammonium enrichment of the water in the culture experiments, it is clearly shown that phosphate and/or ammonium enrichment without CO2 enrichment do not lead to an increase in biomass of Juncus bulbosus. Therefore, it is obvious that the changes in the macrophyte community can be ascribed primarily to changes in the carbon budget as a result of acidification.A minor group of waters (23%) was characterized by the absence of submerged Juncus bulbosus and/or Sphagnum spp. In most of these waters, submerged plant species occurred, such as Myriophyllum alterniflorum DC or non-rooted species such as Riccia fluitans L. These waters were not acidified, and generally had an increased alkalinity and higher nitrogen and phosphate levels of sediment and/or water. Culture experiments showed that phosphate enrichment of the sediment alone leads to luxuriant growth of submerged macrophyte species such as Myriophyllum alterniflorum, whereas phosphate enrichment of both sediment and water leads to mass development of non-rooted plant species such as Riccia fluitans.  相似文献   

4.
The distribution of rotifer communities between emergent (Typha angustifolia) and submerged (Chara tomentosa) vegetation and a comparatively open water zone were compared during the spring, summer and autumn seasons at three macrophyte-dominated lakes. This survey identified 107 rotifera species of which 58% of the taxonomical structure was common for the three examined lakes. Stoneworts with a more complicated spatial and morphological structure (having a much longer stem length than the narrow leaf cattail), supported higher rotifer densities. The stem length appeared to be the best predictor of all the macrophyte parameters and pH and chlorophyll a for the chemical variables, for explaining the variation of rotifer densities using the stepwise multiple forward regressions. The distribution of pelagic species did not differ between particular sites, which may have reflected the behavioural requirements of those rotifers. Some of them remained in the open water zone while others seeking an anti-predator refuge, gathered within macrophyte stands during the daytime. Moreover, there were nine Chara-associated species recorded and only one Typha-associated species was noted. The similarity of rotifer communities was most strongly influenced by particular habitat and season. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

5.
Biomanipulation of eutropicated peaty lakes has rarely been successful; clear water with dense macrophyte stands fails to develop in most cases. It was unclear whether (1) high turbidity due to resuspension by benthivorous fish or wind is the major cause of low macrophyte density or whether (2) the establishment of submerged macrophyte stands is prevented by a lack of propagules, low cohesive strength of the lake sediment, high concentrations of phytotoxics, grazing by waterfowl and/or shading by periphyton growth. These hypotheses were tested in an experiment in a shallow peat lake in the Netherlands (Terra Nova). Removal of fish from a 0.5 ha experimental site resulted in clear water and the development of a dense (90% coverage) and species-rich (10 species) submerged vegetation. At a fish-stocked site and a control site the water remained turbid and dense macrophyte stands did not develop. The establishment of submerged macrophytes appeared not to be limited by a lack of propagules. Introduced plants grew poorly in turbid water, but very well in clear water. Exclosures showed that bird grazing reduced the plant biomass. In clear water grazing seemed to enhance the vegetation diversity. Periphyton development did not prevent plant growth in clear water. After the experiment, the fish stock was greatly reduced in the whole lake (85 ha), to test if (3) in a large lake, submerged macrophyte stands will not develop after biomanipulation. In the first season after fish reduction, transparency increased and species-rich submerged macrophyte stands developed, covering 60% of the shallow parts of the lake. Most of the species known to have occurred in the past re-established. The results indicate that high turbidity caused by benthivorous fish in combination with bird grazing were the major causes of the absence of submerged macrophyte stands in this lake. Abiotic conditions after the clearing of the lake were suitable for the growth of macrophytes. We infer that the restoration potential of submerged macrophyte stands in eutrophicated peaty lakes can be high, and results can be obtained quickly.  相似文献   

6.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

7.
8.
Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m?2 (ice‐free period)?1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3–7.7 mol m?2 (ice‐free period)?1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis‐dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes.  相似文献   

9.
Communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in freshwater sediments and those in association with the root system of the macrophyte species Littorella uniflora, Juncus bulbosus, and Myriophyllum alterniflorum were compared for seven oligotrophic to mesotrophic softwater lakes and acidic heathland pools. Archaeal and bacterial ammonia monooxygenase alpha-subunit (amoA) gene diversity increased from oligotrophic to mesotrophic sites; the number of detected operational taxonomic units was positively correlated to ammonia availability and pH and negatively correlated to sediment C/N ratios. AOA communities could be grouped according to lake trophic status and pH; plant species-specific communities were not detected, and no grouping was apparent for AOB communities. Relative abundance, determined by quantitative PCR targeting amoA, was always low for AOB (<0.05% of all prokaryotes) and slightly higher for AOA in unvegetated sediment and AOA in association with M. alterniflorum (0.01 to 2%), while AOA accounted for up to 5% in the rhizospheres of L. uniflora and J. bulbosus. These results indicate that (i) AOA are at least as numerous as AOB in freshwater sediments, (ii) aquatic macrophytes with substantial release of oxygen and organic carbon into their rhizospheres, like L. uniflora and J. bulbosus, increase AOA abundance; and (iii) AOA community composition is generally determined by lake trophy, not by plant species-specific interactions.Oxygen release from the roots of macrophyte species such as Littorella uniflora (L.) Asch. (shore weed), Lobelia dortmanna L. (water lobelia), and Glyceria maxima (Hartm.) Holmb. (reed sweet grass) stimulates nitrification and coupled nitrification-denitrification in the rhizosphere compared to that in unvegetated sediment (2, 36, 40). These interactions are of high ecological relevance especially in oligotrophic systems, since enhanced nitrogen loss due to rhizosphere-associated denitrification can retard natural eutrophication and succession of plant communities (1). While the microbial communities involved in coupled nitrification-denitrification have been well studied in rice paddy soils (7, 11), less information is available for natural freshwater sediments, especially those from oligotrophic lakes (2, 26).The first key step of coupled nitrification-denitrification, the oxidation of ammonia to nitrite, is catalyzed by two groups of prokaryotes—the ammonia-oxidizing bacteria (AOB) (24) and the only recently recognized ammonia-oxidizing archaea (AOA) (22). For both groups, the gene encoding the alpha-subunit of ammonia monooxygenase (amoA) has been widely used as a functional marker to analyze their community compositions (15, 25); recent studies demonstrated the ubiquity of AOA and their predominance over AOB in a broad range of environments (32, 38). AOA, but not AOB, were also strongly enriched in the rhizosphere of the freshwater macrophyte Littorella uniflora in a mesotrophic Danish lake, suggesting that AOA were primarily responsible for increased rates of nitrification in the rhizosphere of this plant species (19). Moreover, ammonia oxidizer communities differed between rhizosphere and unvegetated sediment, indicating a plant-specific effect on AOA and AOB community composition. The objectives of this study were therefore to test whether (i) AOA generally predominate over AOB in freshwater sediments and especially in macrophyte rhizospheres and (ii) macrophytes have species-specific effects on abundance and community composition of AOA and AOB in rhizosphere sediments and on root surfaces.To address these questions, two shallow heathland pools and five lakes in Denmark and Germany, ranging from low-pH and dystrophic sites to neutral-pH and oligotrophic and mesotrophic sites, were chosen, and three macrophyte species—Littorella uniflora, Juncus bulbosus L. (bulbous rush), and Myriophyllum alterniflorum DC. (alternate water milfoil)—were selected as model systems. These plant species differ in nitrogen nutrition, extent of radial oxygen loss, and lifestyle, presumably resulting in differential, plant species-specific effects on rhizosphere- and root-associated AOA and AOB communities. L. uniflora prefers nitrate as the nitrogen source, while J. bulbosus prefers ammonium (41, 45); oxygen release is high to moderate from the roots of L. uniflora and J. bulbosus (9, 12) but is minor from the roots of M. alterniflorum (M. Herrmann, P. Stief, and A. Schramm, unpublished results); L. uniflora and J. bulbosus remain photosynthetically active throughout the year, while only the below-ground parts of M. alterniflorum are retained during winter.Rhizosphere sediments and roots from each plant species were sampled from three different sites per species, and unvegetated sediment was obtained from all seven sites. The comparison of samples from these different sites and compartments (rhizosphere, root surface, unvegetated sediment) allowed an evaluation of the importance of plant species relative to that of environmental conditions related to lake trophic status and pH on ammonia oxidizer communities.  相似文献   

10.
Summary

From the 15 lochs examined at altitudes between 9 and 267 m in western Sutherland and Wester Ross, a few areas of tall fen (with Hippuris, Sparganium erectum, Osmunda etc.) survive to indicate its potential distribution. Predominant grazed fen comprises patches of short Juncus articulatus and Carex nigra. Reedswamp is scarce, being dominated by Eleocharis palustris, Carex lasiocarpa and Schoenoplectus lacustris and, rarely, by Phragmites and Sparganium erectum. Floating-leaved vegetation was only encountered twice. Submerged vegetation to water depths of at least 1 m consists in the main of sparse Lobelia-Littorella with Juncus bulbosus, typical of the prevailing stony shores in every loch. Extensive Isoetes lacustris meadows may occur beyond that, with Potamogeton praelongus or P. perfoliatus stands in waters of alkalinities over 0·45 m-equiv 1-1, reaching depths of 3 m in Loch Urigill. Loch Urigill is unusual in having dominant Isoetes at a water alkalinity of 0·76 m-equiv 1-1 along with abundant Anabaena species and some Potamogeton filiformis.  相似文献   

11.
12.
Degraded Softwater Lakes: Possibilities for Restoration   总被引:5,自引:0,他引:5  
In the Netherlands, the characteristic flora of shallow softwater lakes has declined rapidly as a consequence of eutrophication, alkalization and acidification. The sediment of most lakes has become nutrient rich and anaerobic. We expected that, if a vital seed bank was still present, restoration of the original water quality and sediment conditions would lead to the return of softwater macrophytes. The restoration of 15 degraded, shallow, softwater lakes in the Netherlands was monitored from 1983 to 1998. In eutrophied as well as in acidified lakes, removal of accumulated organic matter from the sediment and shores was followed by rapid recolonization of softwater macrophytes present in the seedbank. After isolation from alkaline water and subsequent mud removal, this recovery was also observed in alkalized lakes. Further development of softwater vegetation correlated strongly with the water quality. When renewed eutrophication was successfully prevented, softwater macrophytes could expand. However, in acidified lakes, Juncus bulbosus and Sphagnum species became dominant after restoration. Liming of an acidified lake was followed by re‐acidification within 3 years. Recolonization by softwater macrophytes was inhibited by high turbidity of the water column and spreading of large helophytes on the shore. As an alternative, controlled inlet of alkaline, nutrient‐poor groundwater was studied in a few lakes. The pH of those lakes increased, the carbon and nitrogen availability decreased and softwater macrophytes returned. Successful restoration has contributed considerably to maintaining biodiversity in softwater lakes in the Netherlands.  相似文献   

13.
Defining the geographic origins of free‐living aquatic microorganisms can be problematic because many such organisms have ubiquitous distributions, and proving absence from a region is practically impossible. Geographic origins become important if microorganisms have invasive characteristics. The freshwater diatom Didymosphenia geminata is a potentially ubiquitous microorganism for which the recent global expansion of nuisance proliferations has been attributed to environmental change. The changes may include declines in dissolved reactive phosphorus (DRP) to low levels (e.g., <2 mg/m3) and increases in dissolved inorganic nitrogen (DIN) to >10 mg/m3 because both these nutrient conditions are associated with nuisance proliferations of D. geminata. Proliferations of D. geminata have been observed in South Island, New Zealand, since 2004. We aimed to address the ubiquity hypothesis for D. geminata in New Zealand using historical river water nutrient data and new molecular analyses. We used 15 years of data at 77 river sites to assess whether trends in DRP or DIN prior to the spread of D. geminata were consistent with a transition from a rare, undetected, species to a nuisance species. We used new sequences of chloroplast regions to examine the genetic similarity of D. geminata populations from New Zealand and six overseas locations. We found no evidence for declines in DRP concentrations since 1989 that could explain the spread of proliferations since 2004. At some affected sites, lowest DRP occurred before 2004. Trends in DIN also did not indicate enhanced suitability for D. geminata. Lack of diversity in the chloroplast intergenic regions of New Zealand populations and populations from western North America is consistent with recent dispersal to New Zealand. Our analyses did not support the proposal that D. geminata was historically present in New Zealand rivers. These results provide further evidence countering proposals of general ubiquity in freshwater diatoms and indicate that, as assumed in 2004, D. geminata is a recent arrival in New Zealand.  相似文献   

14.
1. Thirty-six species of macrophytes (fourteen flowering plants, two quillworts, sixteen mosses and liverworts, and two algae) were collected in an extensive survey of 116 high mountain lakes in the eastern Pyrenees. Seventy per cent of the lakes showed macrophyte development. 2. The isoetids (Isoetes lacusiris, Isoetes setacea and Subularia aquatica) were the dominant growth form, although the natopotamid Sparganium angusifolium was the most widespread species. Potamids (Potamogeton spp., Ranunculus spp.), the alga Nitella gr. opaca and some mosses (Warnstorfia exannulata, Sphagnum denticulatum) were often present. 3. A multivariate ordination analysis (RDA-redundancy analysis) revealed that water chemistry, altitude and vegetation cover of the catchment, and nutrient availability are major environmental factors associated with macrophyte distribution along the eastern Pyrenean lakes. Isoetids prevailed in softwater oligotrophic lakes, potamids in relatively hardwater oligotrophic lakes, and Potamogeton natans and Callitriche palustris in small and eutrophic water bodies affected by the presence of cattle.  相似文献   

15.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

16.
17.
《Aquatic Botany》2007,87(4):307-319
Short-term variability of spatial heterogeneity of submersed macrophyte biovolume (percent of water column occupied by vegetation) was evaluated over 3 years along a gradient of productivity in four north temperate glacial lakes in Minnesota, USA. We hypothesized we would observe the lowest among-year variability in spatial heterogeneity of biovolume in our undisturbed, moderately productive lake and high variability in our more locally disturbed productive lakes. Our analysis involved three major steps: first, we removed negative trends of biovolume across depth with non-parametric regression smoothers; second, we examined spatial pattern in residuals using variograms; finally, we compared spatial pattern of biovolume among lakes seasonally, over 3 years. Lake productivity negatively correlated with water clarity and the depth range of macrophyte growth, and positively correlated with the variability of spatial patterns. In the least disturbed moderately productive lake, vegetation grew over a large range of depths (up to 7.5 m), and spatial pattern across the littoral zone was similar for each survey. In contrast, in the more turbid, productive lakes, depth and spatial patterns of biovolume varied greatly from survey to survey. Factors that increase productivity and weaken resilience in lakes may lead to unstable spatial patterns of macrophyte biovolume.  相似文献   

18.
Colonisation of extremely acidic waters (pH 3) by aquatic angiosperms occurs widely, but is poorly documented. Unlike acid rain affected and other naturally acidic aquatic ecosystems, waters with pH 3 usually have a high conductivity, with high concentrations of SO4 2- and often high concentrations of Fe3+, other heavy metal ions and Al3+. Where Fe3+ concentration is high, as in many mine waters, it provides a strong buffering system. In such waters, the biogeochemical Fe cycle exerts over water chemistry and the availability of nutrients and carbon for organisms. Biological activity is limited by low concentrations of phosphorus and inorganic carbon (DIC), which in this pH range is essentially all in the form of dissolved CO2. A number of angiosperms grow in such waters including Phragmites australis, Typha spp. and Juncus bulbosus, though the last is the only one reported to grow totally submerged in waters with pH 3 . J. bulbosus occurs in many lignite mining lakes in Lusatia (north eastern Germany) with pH 3. The characteristics and possible survival strategies for this and other species are discussed.  相似文献   

19.
1. Models predicting invasive macrophyte spread between lakes provide an important tool for focusing proactive management efforts to lakes deemed susceptible to invasion. However, challenges to forecasting macrophyte spread include wide physiological tolerances of invasive macrophytes and a lack of information on the relative importance of the various human vectors (e.g. boating traffic). In New Zealand, three invasive species that reproduce vegetatively, Ceratophyllum demersum, Lagarosiphon major, Egeria densa, and a single species that reproduces sexually, Utricularia gibba, are currently spreading across the lake landscape at a great cost to the local ecology and economy. 2. In this study, we first examined whether variables that indirectly describe weed spread via human access and use, as well as a lake’s position in the landscape, could describe the distribution of these four species using a boosted regression trees (BRT) modelling approach. Then, as these invasive species have not reached their full invasion potential, we examined how giving more influence to infected lakes at the edge of the invasion front, and including all lakes across New Zealand as background samples, simulating ‘absences beyond the invasion front’, influenced our ability to forecast the potential for new lakes to be invaded. 3. The BRT models identified that variables characterising human access and use, as well as lake position, were associated with the occurrence of the three vegetatively reproducing macrophytes. Weed occurrence was more likely when there was a highway in the vicinity, human population density was high and if the lake was large (c. 55 km2). But in the single case of U. gibba, temperature was the variable that best explained occurrence. This is consistent with the suggestion that U. gibba is predominantly dispersed by waterbirds, rather than human activity. 4. But for all four species, the BRT models based on the recorded observations alone predicted observed invasions with low prediction probabilities and did not forecast further spread. By contrast, when observations at the edge of the invasion front were upweighted, and additional background lakes implemented into the model, recorded observations were predicted and additional lakes were forecast to be at risk, suggesting that these models better captured the current and potential distribution of these macrophyte species. 5. The use of variables that characterise weed spread could provide similar insights into other systems where survey information on the nature, strength and direction of invasion vectors is lacking. Furthermore, when weighting the data, many lakes across New Zealand were forecasted to be at risk of invasion. The advantage of weighing the presence data was that insights into the potential for a species to spread were obtained. The probabilistic estimates of risk, as derived from the models, together with other information for prioritising lakes, can be used to focus surveillance and protection efforts.  相似文献   

20.
Since Hydrodictyon reticulatum was introduced to New Zealand it has spread rapidly and produced persistent annual nuisance growths in areas where nuisance algal had not occurred previously. Field bioassays were conducted at 10 sites between August 1993 and February 1995 to evaluate the seasonal growth patterns and the factors controlling growth under natural conditions. H. reticulatum exhibited a strong seasonal growth pattern with growth rates up to 0.33 doublings d-1 from August to March, are duction in growth rate in April and little or no growth from May to July. The H. reticulatum present in New Zealand has are latively low requirement for dissolved inorganic nitrogen (DIN) in comparison with other nuisance species, with its growth rate being saturated at 200 mg m-3. This and the high affinity for DIN as shown by a Ks of 29 mg m-3 have been key factors in the establishment of nuisance growths of H. reticulatum in New Zealand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号