首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Staicer  Cynthia A.  Freedman  Bill  Srivastava  Diane  Dowd  Nancy  Kilgar  Jennifer  Hayden  Jill  Payne  Fred  Pollock  Tom 《Hydrobiologia》1994,279(1):185-199
Characteristics of 32 freshwater lakes in central and western Nova Scotia were quantified to determine the relative influence of various biological, chemical, and physical factors on habitat selection by black ducks (Anas rubripes Brewster) during brood-rearing. Acidity and trophic status varied greatly among the waterbodies, of which 20 were used by black ducks for rearing their young. Duck brood density was positively related to lake trophic status. The highest brood densities occurred on hypertrophic waterbodies with a large anthropogenic input of nutrients.Lakes with black duck broods had significantly higher concentrations of phosphorus and nitrogen, darker water with more dissolved organic carbon, and within the littoral zone, greater macrophyte cover, greater density and biomass of pelagic invertebrates, gentler slopes, and a softer, more organic substrate. Similar trends were observed within a subset of 17 acidic lakes (pH 5.5), 8 of which supported black ducks.The density of black duck broods was significantly correlated with 17 of 20 variables, most notably total phosphorus (r= + 0.81). Partial correlation (removing the effect of total phosphorus) revealed that brood density was significantly correlated with the abundances of pelagic (r= + 0.77) and benthic (r= + 0.68) invertebrates, macrophyte cover (r= + 0.52), and substrate score (r= + 0.57), but not with other chemical variables, including pH.Our results suggest that quality brood-rearing habitat is distinguished by a combination of factors, especially available nutrients, macrophyte cover, and invertebrates, subject to constraints imposed by physical characteristics of the littoral zone of the lake. The abundance of invertebrates, the primary food of young black ducks, emerged as the most important biological factor influencing the density of black duck broods.  相似文献   

2.
The planktonic ciliate populations of 30 Florida lakes constituting a broad trophic gradient were examined to determine the response of protozoan community structure to increasing eutrophication. Both ciliate abundance and biomass were strongly related to lake trophic state. Comparison of the Florida data base with a comparable north temperate lake group indicated that subtropical lakes generally possess higher ciliate abundance and biomass at a given trophic state than temperate lakes. However the equations derived for each data base were not significantly different. Community diversity and species richness increased with increasing lake productivity. Highly acidic lakes displayed significantly reduced diversity and numbers of species when contrasted with nonacidic oligotrophic lakes. Small-bodied (< 30 um) ciliates dominated all lakes but were proportionally less important in oligotrophic lakes. Presence-absence data produced three assemblages: an ubiquitous association of primarily small ciliate taxa, a group of large ciliates mainly restricted to eutrophic-hypereutrophic lakes, and a very large ciliate,Stentor niger, which dominated the protozoan communities of acidic oligotrophic lakes.  相似文献   

3.
Aquatic birds were counted on five Gulf coast Florida rivers to determine if these river systems supported densities, biomass and species richness similar to those found on Florida lakes. Forty-two species were identified and for the species that were found on both Florida streams and lakes similar densities and biomass were encountered. As with Florida lakes, stream bird abundance and species richness were higher in winter months than in summer months, a consequence of migratory bird populations. Total bird abundance, biomass per unit of phosphorus, and species richness per unit of area were similar to data collected on Florida lakes. Thus, Florida rivers are capable of supplying sufficient resources to maintain bird densities, biomass and species richness values similar to lakes of equal size and nutrient concentrations and are therefore important habitats for aquatic bird populations. An examination of individual habitat characteristics indicates that water depth was inversely correlated and submersed aquatic vegetation was positively correlated with bird density, biomass and species richness within the river systems. While both habitat characteristics are important they are also inversely related making it difficult to separate the individual significance of each characteristic.  相似文献   

4.
5.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   

6.
1. As quantitative information on historical changes in fish community structure is difficult to obtain directly from fish remains in lake sediments, transfer function for planktivorous fish abundance has been developed based on zooplankton remains in surface sediment (upper 1 cm). The transfer function was derived using weighted average regression and calibration against contemporary data on planktivorous fish catch per unit effort (PF-CPUE) in multiple mesh size gill nets. Zooplankton remains were chosen because zooplankton community structure in lakes is highly sensitive to changes in fish predation pressure. The calibration data set consisted of thirty lakes differing in PF-CPUE (range 18–369 fish net–1), epilimnion total phosphorus (range 0.025–1.28 mg P l–1) and submerged macrophyte coverage (0–57%). 2. Correlation of log-transformed PF-CPUE, total phosphorus and submerged macrophyte coverage v the percentage abundance in the sediment of the dominant cladocerans and rotifers revealed that the typical pelagic species correlated most highly to PF-CPUE, while the littoral species correlated most highly to submerged macrophyte coverage. Consequently, only pelagic species were taken into consideration when establishing the fish transfer function. 3. Canonical correspondence analysis (CCA) revealed that the pelagic zooplankton assemblage was highly significantly related to PF-CPUE (axis 1), whereas the influence of total phosphorus and submerged macrophyte coverage was insignificant. Predicted PF-CPUE based on weighted average regression without (WA) and with (WA(tol)) downweighting of zooplankton species tolerance correlated significantly with the observed values (r2 = 0.64 and 0.60 and RMSE = 0.54 and 0.56, respectively). A marginally better relationship (r2 = 0.67) was obtained using WA maximum likelihood estimated optima and tolerance. 4. It is now possible, quantitatively, to reconstruct the historical development in planktivorous fish abundance based on zooplankton fossil records. As good relationships exist between contemporary PF-CPUE data and indicators such as the zooplankton/phytoplankton biomass ratio, Secchi depth and the maximum depth distribution of submerged macrophytes, it is now also possible to derive information on past changes in lake water quality and trophic structure. It will probably prove possible further to improve the transfer function by including other invertebrate remains, e.g. chironomids, Chaoborus, snails, etc., and its scope could be widened by including deeper lakes, more oligotrophic lakes, more acidic lakes and lakes with extensive submerged macrophyte coverage (in the latter case to enable use of the information in the fossil record on plant-associated cladocerans).  相似文献   

7.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

8.
SUMMARY.
  • 1 The relative abundance of oligotrophic species in tubificid and lumbriculid communities was related to phosphorus concentration in eight lakes of Western Europe and three large lakes of North America.
  • 2 Mean annual concentrations of total phosphorus, recorded in the whole lake during the 5 years preceding the sampling of worms, were averaged and this mean was used to indicate the trophic state.
  • 3 Mean relative abundance (%) of oligotrophic species (OS) was negatively correlated with mean concentrations (mg m?3) of total phosphorus (TP): OS = 80.29 – 8.35 TP0.5r2= 0.81
  • 4 Location and depth from which worms were sampled also influenced values of OS.
  相似文献   

9.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

10.
Biological indicators that signal changes in lake condition are essential tools for guiding resource management decisions. Macrophyte-based indicators have traditionally been selected and evaluated in the context of nutrient-based stressors, although the need to evaluate indicators that are sensitive to climate stressors has been increasingly relevant. Moreover, indicators should ideally exhibit minimal sampling variation and have low natural temporal variation so there is high power to detect changes in the mean value over time. Eight macrophyte indicators were estimated in 23 Minnesota (USA) lakes using four years of repeated surveys to estimate sampling and temporal variation, response to development (phosphorus concentration) and climate stress (annual growing degree days), and power to detect significant change at various annual sampling intervals. Indicators included a macrophyte index of biotic integrity, floristic quality index, maximum depth of growth, total species richness, common species richness, mean richness, and frequency occurrence of rooted species and Chara sp. Overall, regression and smoothed additive models indicated significant relationships of indicators to total lake phosphorus and mean annual growing degree days. The macrophyte index of biotic integrity, floristic quality index, and the frequency rooted species had minimal sampling variation in this study, were responsive to development or climate stress, and had low annual variation (coefficients of variation 0.08, 0.10, and 0.19, respectively) resulting in high to moderate power (>50%) for detecting significant change over a 20 year period. Results from these analyses will facilitate the use of precise and powerful indicators that respond to stressors that are of concern for the management of freshwater glacial lakes.  相似文献   

11.
The planktonic ciliate populations of 20 Florida lakes ranging from oligotrophic to hypereutrophic were examined monthly for one year. Oligotrophic lakes displayed abundance peaks during fall mixis and biomass peaks in late winter and fall. Mesotrophic systems exhibited a spring-fall bimodality in ciliate abundance with a biomass maxima occurring during fall. Eutrophic/hypereutrophic lakes had pronounced abundance and biomass maxima during summer, with the large ciliates Plagiopyla nasuta and Paramecium trichium often contributing heavily to the midsummer biomass peak. Members of the Oligotrichida numerically dominated abundance and biomass peaks in oligotrophic lakes while the Scuticociliatida dominated the communities of higher trophic states. Total ciliate abundance and biomass were strongly correlated with chlorophyll a concentrations as were various ciliate taxonomic groups. The relationship between ciliate seasonal distribution in these subtropical lakes with lake thermal regimes and trophic state is discussed.  相似文献   

12.
Species richness of Protozoa in Japanese lakes   总被引:2,自引:0,他引:2  
N. Takamura  Y. Shen  P. Xie 《Limnology》2000,1(2):91-106
The protozoan fauna and species richness in the pelagic zone of 15 Japanese lakes were investigated in 1996 using polyurethane foam (PF) substrates. The most common species were flagellates, such as Cryptomonas erosa, Oikomonas termo, and Pleuromonas jaculans. Cinetochilum margaritaceum and Actinophrys sol were the most common species of the Ciliata and Sarcodina, respectively. The similarity of species occurrence was calculated from presence/absence data, but this revealed no clear trend with respect to the influence of lake properties such as trophic state, surface area, or mean depth. The occurrence pattern of Protozoa was most similar in L. Chuzenji and L. Biwa (north basin), two oligomesotrophic natural lakes. Log species richness was positively correlated with log total phosphorus (r = 0.54, P < 0.05) and negatively with log mean depth (r = −0.58, P < 0.05). The diversity index (Margalef's formula), highly correlated with the total species number (r = 0.85, P < 0.01), was negatively correlated with log lake area (r = −0.71, P < 0.01). The logarithm of Phytomastigophora number was positively correlated with log total nitrogen (r = 0.53, P < 0.05), and the logarithm of Ciliata number was negatively correlated with log lake area (r = −0.55, P < 0.05). The species richness of Protozoa on PF substrates was determined by both the nutrient status of the lake and the distance from the location of the suspended PF substrate to the lake bottom or shore. Received: September 25, 1999 / Accepted: January 6, 2000  相似文献   

13.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

14.
15.
Defining the overall ecological status of lakes according to the Water Framework Directive (WFD) is to be partially based on the species composition of the aquatic macrophyte community. We tested three assessment methods to define the ecological status of the macrophyte community in response to a eutrophication pressure as reflected by total phosphorus concentrations in lake water. An absolute species richness, a trophic index (TI) and a lake trophic ranking (LTR) method were tested at Europe-wide, regional and national scales as well as by alkalinity category, using data from 1,147 lakes from 12 European states. Total phosphorus data were used to represent the trophic status of individual samples and were plotted against the calculated TI and LTR values. Additionally, the LTR method was tested in some individual lakes with a relatively long time series of monitoring data. The TI correlated well with total P in the Northern European lake types, whereas the relationship in the Central European lake types was less clear. The relationship between total P and light extinction is often very good in the Northern European lake types compared to the Central European lake types. This can be one of the reasons for a better agreement between the indices and eutrophication pressure in the Northern European lake types. The response of individual lakes to changes in the abiotic environment was sometimes represented incorrectly by the indices used, which is a cause of concern for the use of single indices in status assessments in practice.  相似文献   

16.
The aim of this study was to examine whether littoral nematode community patterns are shaped by lake trophic state. It was hypothesized that trophic level is associated negatively with the proportion of omnivores and positively with the percentages of bacterial feeders, but not at all with the diversity, abundance, and biomass of freshwater nematodes. Sediment samples were taken at littoral sites of eight southern Swedish lakes of different trophy in spring and autumn 2007. Trophic level was found to strongly influence species richness, as oligotrophic and mesotrophic lakes supported the greatest species numbers, whereas nematode abundance, biomass, and Shannon index were unaffected. Furthermore, our results indicated effects on the nematode community’s trophic structure, with a larger proportion of predatory nematodes in oligotrophic and mesotrophic lakes but no differences in the other feeding types (bacteria, algae and suction feeders, omnivorous species). Multivariate analysis indicated a shift in species compositions along the threshold from mesotrophic to eutrophic conditions, with the presence of Tobrilus gracilis, Monhystera paludicola, Brevitobrilus stefanskii, and Ethmolaimus pratensis related to the latter. Nematode communities in oligotrophic and mesotrophic lakes were characterized by a similar species composition, with pronounced occurrences of Eumonhystera longicaudatula, Semitobrilus cf. pellucidus, Prodesmodora circulata, and Rhabdolaimus terrestris. Overall, the results suggested that lake trophic state is a major factor structuring littoral nematode communities, although intra-lake variations might be of importance as well.  相似文献   

17.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

18.
19.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

20.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号