首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The predation and searching efficiency of fourth instar of predatory C. septempunctata at various densities of mustard aphid, Lipaphis erysimi (Kaltenbach) and predator was investigated under laboratory conditions. The feeding rate of predatory stage decreased at increased prey- and predator densities. Highest percent (92.80%) prey consumption was observed at initial prey density and lowest percent (40.86%) prey consumption at highest prey density by the fourth instar, though the total prey consumption increased with increase in either prey- or predator densities. Similarly, the individual prey consumption was also highest at initial predator density and lowest at highest predator density owing to the mutual interference between the predators at higher densities. The area of discovery (searching efficiency) also decreased with increase in prey- and predator densities. Handling time of predator was highest at lower prey densities, which decreased with increased prey densities. The highest percentage of prey consumption at the prey density of 50 revealed that 1:50 predator-prey ratio was the best to reduce the pest population.  相似文献   

2.
David E. Wooster 《Oecologia》1998,115(1-2):253-259
Recent theoretical work suggests that predator impact on local prey density will be the result of interactions between prey emigration responses to predators and predator consumption of prey. Whether prey increase or decrease their movement rates in response to predators will greatly influence the impact that predators have on prey density. In stream systems the type of predator, benthic versus water-column, is expected to influence whether prey increase or decrease their movement rates. Experiments were conducted to examine the response of amphipods (Gammarus minus) to benthic and water-column predators and to examine the interplay between amphipod response to predators and predator consumption of prey in determining prey density. Amphipods did not respond to nor were they consumed by the benthic predator. Thus, this predator had no impact on amphipod density. In contrast, amphipods did respond to two species of water-column predators (the predatory fish bluegills, Lepomis macrochirus, and striped shiners, Luxilus chrysocephalus) by decreasing their activity rates. This response led to similar positive effects on amphipod density at night by both species of predatory fish. However, striped shiners did not consume many amphipods, suggesting their impact on the whole amphipod “population” was zero. In contrast, bluegills consumed a significant number of amphipods, and thus had a negative impact on the amphipod “population”. These results lend support to theoretical work which suggests that prey behavioral responses to predators can mask the true impact that predators have on prey populations when experiments are conducted at small scales. Received: 21 March 1997 / Accepted: 15 December 1997  相似文献   

3.
We performed a 6-month laboratory experiment to investigate the direct and indirect effects of predation by the benthic invertebrate predator Saduria entomon on the growth and survival of Monopreia affinis prey individuals in different age-cohorts at low and high prey densities. The experimental results were compared with changes of growth and abundance in corresponding age-cohorts of M. affinis at sites with different S. entomon and M. affinis densities in the deep sublittoral zone of the Bothnian Sea during the same year. In the experiment, the presence of S. entomon reduced growth rate of M. affinis in the 1-year and 2-year age-cohorts at low amphipod density. Increased refuge use by M. affinis, expressed as a decrease in swimming activity in the presence of S. entomon, is suggested to have reduced feeding rate and therefore growth of the amphipods. The recruitment of M. affinis offspring was reduced in presence of S. entomon. In the field, the growth rate of amphipods in the 1-year cohort increased with increasing S. entomon density at low amphipod density. We found no corresponding increase of M. affinis growth in the 2-year cohort. The positive effect on 1-year amphipod growth indicated that predation reduced intra-cohort competition of M. affinis and increased growth of surviving prey at high predator density. In both the experiment and the field data we found indications of size-selective predation on smaller M. affinis specimens. This was because of the changed ratio between number of individuals in the juvenile age-cohorts and lower recruitment of amphipod offspring connected to S. entomon density. The experimental results and field data suggest that predation by S. entomon may have both direct and indirect effects on the size-structure of M. affinis populations. Received: 22 June 1998 / Accepted: 15 March 1999  相似文献   

4.
The basic components of the predation of Phytoseiulus persimilisAthias-Henriot feeding upon eggs of Tetranychus urticaeKoch were studied in an open system where the predator could disperse freely. The type of the functional response of the predator to the density of its prey was the same as that studied so far in a closed system, i.e.,Holling's Type 2. The search rate of the predator, however, was much lower in comparison with the result from a closed system. The oviposition of the predator per day was only weakly related to prey densities higher than 10 per leaf disc. But the emigration rate was inversely dependent upon the initial prey density up to 60 per leaf disc. The searching behaviour of the predator was influenced by both the web density spun by T. urticae and the density of the prey: the predator searched for its prey intensively only after it had contact with web. Mutual interference was observed in prey consumption, but not in the emigration rate. The emigration rate was largely dependent upon the prey density available per predator.  相似文献   

5.
Griffen BD  Byers JE 《Oecologia》2006,146(4):608-614
Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific. An erratum to this article can be found at  相似文献   

6.
Amphipod abundance and biomass were determined in soft-bottom substrates (SBS), monospecific Thalassia testudinum patches and T. testudinum with attached macroalgae (SAV) from Términos Lagoon. Amphipods were absent in SBS, and their density and biomass were higher in SAV (3351 individualsm(-2), 1718 mg AFDWm(-2)) than in T. testudinum (1220 indm(-2), 625 mg AFDWm(-2)). Although macroalgae and seagrasses are recognised as an alternative refuge against predation for amphipods, the high abundance of amphipods in SAV suggests that macroalgae represent a habitat that provides greater food availability. Pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939) consumption rate (Mo) of epibenthic amphipods was experimentally evaluated. Mo intensifies as prey density increases and varied from 0.39 to 2.39 mg AFDWh(-1). Predation efficiency of F. duorarum on epibenthic amphipods was also evaluated in four artificial habitats with different physical complexity: soft-bottom substrates (SBS), small woody debris (SWD), seagrasses with densities of 300 and 1200 shootsm(-2) (S300 and S1200, respectively), macroalgae (MA), and at two prey densities (962 and 2406 indm(-2)). Amphipod consumption rate by F. duorarum varied from 1.20 to 2.07 indh(-1) in S1200 and MA, respectively. Habitat complexity had a significant effect on consumption rate, but prey density did not. Habitat physical complexity and predation efficiency maintained an inverse and a non-linear relationship. Presumably, the decrease in predation efficiency in association with the habitat complexity is due to the differential refuge value of these habitats. However, predation efficiency may also be influenced by either the microhabitat use by amphipods, the shrimp's dependence on seagrasses, or by differences in habitat value caused by the diel behavioural distribution pattern of amphipods and shrimp. Both field and experimental results highlight the importance of evaluating the relative value of tropical estuarine habitats through the study of the relationship between habitat physical complexity and predator-prey interactions. They also emphasise that inherent biological and ethological factors of the predator and prey involved, coupled to spatial and temporal variations in the habitat, should also be considered.  相似文献   

7.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

8.
The nudibranch Coryphella rufibranchialis (JOHNSTON) feeds on a variety of hydroids, including Tubularia larynx Ellis & Solander. Experiments in which density of prey and predators were altered showed that more prey were eaten as prey density increased. However, more prey were consumed at low predator densities, presumably because of mutual interference among nudibranchs at the higher predator densities. The number of prey consumed per nudibranch was maximal with low predator densities and a ratio of 25–50 polyps per predator. Coryphella seems to show an opportunistic feeding strategy involving solitary predators rapidly depleting hydroid colonies and moving on to new colonies.  相似文献   

9.
Abstract. The intertidal hoplonemertean Prosorhochmus americanus is a common inhabitant of the fouling community of rock jetties of the southeast coast of the United States. We undertook a laboratory investigation of the feeding rate of this nemertean, which is a suctorial predator of amphipod crustaceans that co‐occur in abundance in the fouling community. While submerged in water (simulating high tide), worms fed on the tube‐building amphipods Jassa falcata and Corophium cf. insidiosum at rates of 0.19 amphipods nemertean?1 d?1 (n=10) and 0.26 amphipods nemertean?1 d?1 (n=14), respectively. These predation rates were not significantly different (two‐tailed t‐test, p>0.05), and are similar to those estimated in laboratory studies of other suctorial nemerteans. Many nemerteans are typically more active at night, and indeed, adults of P. americanus consumed more individuals of J. falcata during dark periods than during light periods (χ2 analysis, p<0.05). However, no difference in consumption of individuals of C. cf. insidiosum was observed in dark versus light. We attribute these contrasting results to differences in tube‐building behavior exhibited by these two species of amphipod under laboratory conditions. Our results and those of other laboratory investigations suggest that nemerteans that prey on amphipods feed at a rate of ~0.2 prey items nemertean?1 d?1, but under natural conditions this rate may not be obtained because of limited feeding time, longer foraging distances, and emigration of prey from regions of high nemertean activity.  相似文献   

10.
Traditional predation theory assumes that prey density is the primary determinant of kill rate. More recently, the ratio of prey‐to‐predator has been shown to be a better predictor of kill rate. However, the selective behavior of many predators also suggests that age structure of the prey population should be an important predictor of kill rate. We compared wolf–moose predation dynamics in two sites, south‐central Scandinavia (SCA) and Isle Royale, Lake Superior, North America (IR), where prey density was similar, but where prey age structure and prey‐to‐predator ratio differed. Per capita kill rates of wolves preying on moose in SCA are three times greater than on IR. Because SCA and IR have similar prey densities differences in kill rate cannot be explained by prey density. Instead, differences in kill rate are explained by differences in the ratio of prey‐to‐predator, pack size and age structure of the prey populations. Although ratio‐dependent functional responses was an important variable for explaining differences in kill rates between SCA and IR, kill rates tended to be higher when calves comprised a greater portion of wolves’ diet (p =0.05). Our study is the first to suggest how age structure of the prey population can affect kill rate for a mammalian predator. Differences in age structure of the SCA and IR prey populations are, in large part, the result of moose and forests being exploited in SCA, but not in IR. While predator conservation is largely motivated by restoring trophic cascades and other top–down influences, our results show how human enterprises can also alter predation through bottom–up processes.  相似文献   

11.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

12.
While both predator body size and prey refuge provided by habitat structure have been established as major factors influencing the functional response (per capita consumption rate as a function of prey density), potential interactions between these factors have rarely been explored. Using a crab predator (Panopeus herbstii) – mussel prey (Brachidontes exustus) system, we examined the allometric scaling of the functional response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster clusters provide mussels refuge from predation. A field survey of mussel distribution showed that mussels attach closer to the cluster periphery at high mussel density, indicating the potential for saturation of the refuge. In functional response experiments, the consumption rate of large crabs was depressed at low prey density relative to small crabs, while at high prey density the reverse was true. Specifically, the attack rate coefficient and handling time both decreased non‐linearly with crab size. An additional manipulation revealed that at low prey densities, the ability of large crabs to maneuver their claws and bodies to extract mussels from crevices was inhibited relative to small crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices were saturated, forcing mussels to the edge of clusters where crabs were only limited by handling time. Our study illuminates a potentially general mechanism where the quality of the prey refuge provided by habitat structure is dependent on the relative size of the predator. Thus anthropogenic influences that alter the natural crab size distribution or degrade reef habitat structure could threaten the long‐term stability of the crab –mussel interaction in reefs.  相似文献   

13.
The influence of prey choice on the predation of a target prey item by a polyphagous insect predator was investigated in field plot studies. The target prey consisted of eggs of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and the predator was the 12‐spotted ladybeetle, Coleomegilla maculata Lengi (Coleoptera: Coccinellidae). Eggs of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae), and nymphs and adults of the green peach aphid, Myzus persicae Sulzer (Homoptera: Aphididae), comprised the alternative prey choices. The objectives of these studies were to: (1) examine predation in a multiprey scenario likely to occur in an agroecosystem, and (2) use the data to simulate the impact of predator‐induced mortality on the evolution of resistance to Bt‐transgenic plants in the target herbivore. Simulations of the rate of resistance evolution were carried out using a deterministic genetic model. Experiments were performed using potato field plots planted in a manner reflecting a 25% or 50% non‐transgenic refuge. CPB eggs were infested so as to mimic the densities of resistant and susceptible populations that might occur in commercial Bt‐transgenic plantings. Densities of predators and alternate prey species were chosen to represent those that might typically occur in potato crops in the eastern USA. Simulation results indicated that when ECB eggs were present, predation on CPB eggs either became inversely spatially density‐dependent, or increased significantly in a density‐dependent manner. When aphids were present, predation became positively density‐dependent. Model simulations predicted that ECB egg presence is beneficial, in that resistance was delayed by up to 40 pest generations (as compared to the scenario with CPB as the only prey), while aphid presence accelerated resistance evolution by 18 generations. Results suggest that resistance management strategies should take into account the composition of prey species available to generalist predators typically present, so as to best delay pest adaptation to Bt‐toxins.  相似文献   

14.
Predation rate and numerical response are basic to any investigation of predator–prey relationships and key components in the selection of predators for biological control. The density-dependent predation rate and numerical response of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) to varying densities (5, 10, 20, 40, 60 and 80) of third-instar Aphis craccivora (Koch) (Hemiptera: Aphididae), were studied in laboratory conditions [23±1°C, 70 ± 5% relative humidity (RH), and a photoperiod of 16:8 h L:D. Predation rate data were analysed using the age-stage, two-sex consumption rate software. Net consumption rate (C0) increased by increasing prey density. The lowest and highest net consumption rates were 20.75 and 190.8 prey nymphs at densities of 5 and 80 A. craccivora. The transformation rate from prey population to predator offspring (Qp) increased by increasing prey density. The reproductive numerical response, in terms of eggs laid, increased curvilinearly with increasing prey density. Females laid 121.375 ± 4.301 eggs when exposed to the highest prey density (80) and 52.5 ± 1.544 eggs at lowest prey density (5). It can be concluded that different densities of A. craccivora influenced the reproductive performance of A. aphidimyza in terms of predation rate and numerical response.  相似文献   

15.
The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success among predators was quantified by observing the predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus in the laboratory. A population model was then developed, and the effect of foraging variability on predator–prey dynamics was examined by incorporating levels of variation comparable to those quantified in the experiment. The variability in the foraging success among spiders was greater than would be expected by chance (i.e., the random allocation of prey to predators). The foraging variation was density‐dependent; it became higher as the predator density increased. A population model that incorporates foraging variation shows that the variation influences population dynamics by affecting the numerical response of predators. In particular, the variation induces negative density‐dependent effects among predators and stabilizes predator–prey dynamics.  相似文献   

16.
T. Lode 《Austral ecology》2000,25(3):223-231
A study of the feeding habits and movements of 11 radiotracked polecats Mustela putorius in western France revealed that seasonal predation upon agile frogs, Rana dalmatina, was directly influenced by prey abundance and distribution. Although dietary structure showed the importance of mammalian prey (71.5%), polecats exploited nocturnal, terrestrial anurans in spring (31.6%). The periodic activity of anurans at spawning sites led both to a maximum density in spring and to a patchy distribution. The monthly variations in anuran dietary occurrences were associated with changes in frog availability. The functional response of polecats to frog density was sigmoidal shaped (type 3 response). Frog consumption rate increased more slowly than prey density but frogs were actively removed at higher density. It is therefore suggested that frog populations were moderately affected by the predator and this density dependent effect tends to stabilise anuran populations. Predation upon anurans was also correlated with a prey dispersion index as revealed by a polynomial regression. Polecats concentrated their predation on spawning congregations of the breeding adult frogs. Movements were smallest in spring and polecats changed their track length by increasing the difference between a succession of small movements and of longer journeys towards profitable sites. Changes in movements correlated with the anuran dispersion index and the response was sigmoidal (polynomial regression) revealing an area‐restricted search. This response may be regarded as an ‘aggregative response’ according to the first part of the definition of Begon et al. (1996) . Functional and area‐restricted search responses to the frog abundance and dispersion constitute an original example of predator‐prey coexistence strategies among vertebrates. I suggest that such predation could be favoured by the individualistic habits of the mustelid.  相似文献   

17.
The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.  相似文献   

18.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

19.
The diet of Harpagifer bispinis (Pisces: Nototheniidae) from two localities of the South Shetland Archipelago was studied. Simultaneous to the capture of H. bispinis and at the same sites the availability of food was considered, and amphipod diversity was compared with the density of Harpagifer. It was found that three quarters of the fish fed only on amphipods (mainly Gondogeneia antarctica) and for the rest amphipods were also the main component, even when other prey species were available. The high selectivity of G. antarctica is due to its high mobility and to the fact that Harpagifer is an ambush feeder. At different predator densities the amphipod fraction of the community appears to be highly modified by the predator both numerically and in species evenness. We postulate that Harpagifer can be a key species in structuring the mobile epibenthic community, even when this environment is subject to strong physical stress.  相似文献   

20.
Understanding predator avoidance behavior by prey remains an important topic in community and invasion ecology. Recently, the Ponto-Caspian amphipod Echinogammarus ischnus (Stebbing 1898) was accidentally introduced into the Great Lakes. Since its introduction, it has displaced the native amphipod, Gammarus fasciatus (Say 1818), from several locations in the lower lakes. To assess whether behavioral differences in predator avoidance might be a causal mechanism increasing the success of the invasive amphipods, two experiments were conducted examining (1) native and invasive amphipod behavioral responses to five fish species with different foraging behaviors, and (2) amphipod responses to different densities of round gobies, a hyper-abundant benthic invertivore. Echinogammarus reduced its distance moved in the presence of all fish species tested, whereas Gammarus reduced its distance moved only after exposure to round gobies, black crappies, and rainbow darters. Both amphipod species increased the time spent motionless following exposure to round gobies, but not after encountering the scent of most of the remaining fish predators. The exception was that Echinogammarus also responded to black crappie scent whereas Gammarus did not. Although both amphipod species exhibited behavioral responses to many of the fish predators, the magnitude of their responses differed only after exposure to the brown bullhead. In the bullhead trials, Echinogammarus reduced its distance traveled significantly more than Gammarus. Both amphipod species increased their avoidance response to increasing goby density, however, the pattern of avoidance behavior was different. Invasive E. ischnus exhibited a consistently strong avoidance response to round gobies over the test duration. Native G. fasciatus initially avoided goby scent, but then either ceased their avoidance response or showed a hyper-avoidance response, depending on goby density. These results suggested (1) both species of amphipods were able to differentiate and react to a variety of fish predators, (2) invasive Echinogammarus amphipods avoided a larger range of fish predators than the native Gammarus, (3) increased avoidance behavior was associated with an increased density of fish, and (4) the avoidance response patterns of invasive Echinogammarus when faced with round goby predators might lead to increased predation on native Gammarus in habitats where they co-occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号