首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional response of a ladybeetle, Propylea dissecta, to increasing density of aphid, Aphis gossypii, was of the curvilinear shape depicting Holling's type II response with fourth instar larva being the most voracious stage when compared with adult male and female. Prey handling time by different predatory stages decreased from 65.45 to 8.72 min with increase in prey density from 25 to 800. The predator aggregation and high prey density reduces the searching efficiency of the predator. Area of discovery was highest (1.4437) when a single predator was searching at minimum aphid density (25) and lowest (0.0366) when eight predators were searching at a constant aphid density (200). Mutual interference and quest constants were 0.75 and 0.40, respectively. The reproductive numerical response, in terms of eggs laid, increased curvilinearly with prey density and female laid 70.5 ± 5.55 eggs when exposed to highest prey density (400) and 12.3 ± 0.79 eggs at lowest prey density (10). The similar shapes of both functional and reproductive responses indicate that both responses are interlinked and function simultaneously.  相似文献   

2.
Individuals of the same species, population and generation frequently exhibit sub-maximal and significant genetic and phenotypic variation in their rate of development, showing slow and fast developers. Fast developers commonly have higher foraging and predation rates than slow developers. The consequence of such differences and foraging for the efficacy of biocontrol species remains under-explored. Slow and fast developers from a population of the ladybird, Propylea dissecta were separated and selected experimentally for F15 generations, and the predatory response of fourth instar larvae of control and experimentally selected slow and fast developers was then assessed at differing levels of prey (pea aphid, Acyrthosiphon pisum) and conspecific predator abundance. All individuals, whether slow or fast developers, showed a Type-II functional response, decrease in proportion of prey consumed with increasing prey biomass and an increase in proportion of prey consumed with increasing predator density. The proportion of prey consumed was highest in experimental fast developers and lowest in experimental slow developers. Attack rate was highest and handling time longest in slow developers of control/experimental groups. Mutual interference was least while area of discovery was highest in experimental fast developers. Thus, selection of fast developers for F15 generations led to higher functional responses, slower attack rates and faster prey consumption. This lower mutual interference and high searching efficiency indicates that they can be experimentally selected and used for better control of the pea aphids. This study is the first attempt to evaluate predatory responses of selected lines of an aphidophagous ladybird.  相似文献   

3.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

4.
The effect of prey density on feeding behaviour, killing behaviour, and development of the predatory mosquito,Toxorhynchites towadensis, was investigated in the laboratory. The number of prey consumed per larva increased toward an upper asymptote as prey density increased. Prey consumption curves during fourth instar were concave at low prey densities but convex at high prey densities. This phenomenon was not observed during other instars. Killing without consuming any part of prey occurred at prey densities of 20 per container and over. The number of prey killed but not consumed increased linearly with the number of unconsumed prey in the container. Prey acquisition behaviour was not affected by prey densities during the prepupal period. Developmental time from first instar to adult emergence decreased with increasing prey densities, but remained constant at densities of 10 per container and over. Adult size increased with increasing prey densities but there was no effect at prey densities of 20 and over.  相似文献   

5.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

6.
Abstract The predatory behavior and functional response of all larval stages and adults of Nephpis oculatus (Blatchley), a predacious coccinellid, on various egg densities of Bemisia argentgolii Bellows & Pemng, and prey preference of adult N. oculatus , were studied in the laboratory. Daily consumption of eggs of B. argentifolii by N. oculatus was evaluated at six different densities to obtain functional response curves for all active stages of the coccinellid. Bemisia argentifolii eggs were offered to N. oculatus on collard leaf disks in Petri dish arenas over a 24-h period at 26.7 ∀ 2°C: and a photoperiod of 14:10 (L: D) h. Linear relationship were observed between percentage prey consumed and prey density, with r 2 values between 0.82–0.99 for all stages except for the fourth instar that had a smaller r2 value (0.64). Functional response curves of prey consumption by N. oculatus against density of B. argentifolii eggs fitted the type II model of Holling's disc equation for all larval stages and both the male and female adults. Adult females consumed more prey than adult males. The maximum theoretical number of prey consumed per day increased with larval development. The fourth instar was the most effective larval predator, followed by the third instar, the second instar, and finally, the first instar. Based on the functional response parameters, a maximum of 321, 312, 237, 229, 73, and 34 B. argentifolii eggs could be attacked by an adult female, a fourth instar, an adult male, a third instar, a second instar, and a first instar of N. oculatus , respectively. Nephaspis oculatus adults strongly preferred collard to tomato, soybean, eggplant or sweet-potato for oviposition and foraging. Nephaspis oculatus did not deposit any eggs on soybean and tomato.  相似文献   

7.
1. Functional responses of predatory Toxorhynchites moctezuma (Dyar & Knab) larvae feeding on Aedes aegypti (L.) larvae (Diptera: Culicidae) were found to be type II of Holling (1959) and Rogers (1972). 2. Estimates of searching rate were generally higher for later instar predators. The search rate of second instar predators declined as prey instar increased, but fourth instar Tx. moctezuma had the highest search rate for second instar Ae. aegypti. 3. Prey handling times were higher for early instar predators and late instar prey. 4. When presented with mixtures of two instars of Ae. aegypti, second instar Tx. moctezuma showed frequency independent selectivity for the early instars, whereas fourth instar predators showed frequency independent selectivity for the late instars of Ae. aegypti. There was no evidence of frequency dependent predation. Preferences appeared to be transitive. 5. Extended random predator equations, using parameters derived from the functional responses, did not adequately describe the outcome of predation in the prey mixture experiment, even when the possibility of optimal switching behaviour was accounted for.  相似文献   

8.
We present an analysis of the functional response of the predator Toxorhynchites rutilus rutilus (Coquillett) to changes in the density of the larvae of Aedes aegypti (L.) (Diptera: Culicidae). The experiment was replicated for five different ages, and at three different densities of the predator. The data were fitted to Rogers' (1972) random predator equation by non-linear least-squares in order to estimate searching efficiency and handling time for each experimental treatment. The data show that estimated searching efficiencies are highest at intermediate ages of the predator for all predator densities tested. Handling time declines exponentially with increasing predator age. There is a marked interference effect; searching efficiency decreases with increased predator density, and this is most pronounced at intermediate prey ages. Estimated handling times increase with predator density at a rate which declines with increasing predator age.  相似文献   

9.
Environmental risks associated with the use of non-indigenous organisms for augmentative biological control have received growing attention. In Europe, the native pentatomid predator Picromerus bidens (Linnaeus) has been considered a potential alternative to the North American pentatomid Podisus maculiventris (Say) for the control of lepidopteran, coleopteran and hymenopteran defoliator pests. In the current study, prey consumption and developmental duration of the predatory stages of P. bidens and P. maculiventris were investigated at three temperatures (18, 23 and 27 degrees C) in the laboratory using caterpillars of Spodoptera littoralis as prey. Development time from second to fifth instar was longer for P. bidens than for P. maculiventris, taking on average 17-44 and 14-32 days, respectively, at the different temperatures. Total nymphal consumption of fourth instar S. littoralis caterpillars indicated a greater voracity of P. bidens as compared with P. maculiventris at both the low and high temperatures tested (18 and 27 degrees C). At 23 degrees C, however, the predation rate of P. maculiventris nymphs exceeded that of P. bidens nymphs. Effect of temperature on the functional response of P. bidens to densities of fourth instar Spodoptera exigua was assessed on potted green bean plants. Female adults of P. bidens exhibited a type II functional response at 18 and 23 degrees C but a type III response at 27 degrees C. Searching efficiency was not affected by temperature but handling time decreased from 4.2 to 1.4 h as temperature increased from 18 to 23 degrees C. However, the predator spent twice as much time handling prey at 27 degrees C (2.9 h) than at 23 degrees C. This study indicates high predation rates of P. bidens at a wide range of temperatures and suggests that the species may be a valuable asset for the biological control of defoliating caterpillars, provided that obstacles to its mass production can be overcome.  相似文献   

10.
Temperature had various effects on the predacious efficacy of immature and mature stages of the coccinellid predator, Stethorus punctillum on the two-spotted spider mite, Tetranychus urticae. In the case of immature stages, food consumption at the lowest tested temperature (15°C) was significantly higher than that at higher temperatures (25 and 35°C). On the contrary, positive correlation between food consumption and temperature was evaluated in the case of adult predator. Regarding predator responses to different prey density, a high positive correlation between food consumption and prey density was evaluated among 4th instar larvae of the predator, followed by adult predator, while younger instars did not show reasonable increases with increasing prey densities. These results confirm that larval and adult stages of S. punctillum exhibit “Type II” functional response. In conclusion, the 4th instar larvae and adult predator are the most preferable stages in winter and summer crops to control T. urticae, respectively.  相似文献   

11.
The functional response of Cydonia vicina nilotica Muls. (Coleoptera: Coccinellidae) to six densities of Aphis craccivora Koch (Homoptera: Aphididae) nymphs on broad bean (Viciafaba Linn.) was investigated in the laboratory. A linear relationship between the rate of consumption and prey density was observed with r^2 values between 0.58 and 0.97. Plotting prey density against prey killed by four larval instars, and adult males and females of C. vicina nilotica fit well with the type Ⅱ model of Holling' s disc equation. Adult females consumed the highest number of prey, followed by fourth instars and adult males. Based on the functional response data, the model predicts a maximum of 144.9, 116.3, 86.2, 80.0, 72.5 and 20.0 nymphs to be consumed per day by an individual adult female, fourth instar, adult male, third, second and first instars, respectively. The differences in the responses of the predator to aphid densities are discussed.  相似文献   

12.
以重要中草药黄精Polygonattum sibiricium的主要害虫二斑叶螨Tetranychus urticae为研究对象,在5个温度(15℃、20℃、25℃、30℃及35℃)条件下,测定了大草蛉Chrysopa pallens雌成虫对二斑叶螨的捕食功能反应及搜索效应。试验结果表明,在温度处理设置范围内,各温度下大草蛉对二斑叶螨的捕食功能反应均拟合HollingII功能反应模型。大草蛉对二斑叶螨的捕食,受温度及猎物密度影响显著。而在各温度处理间,以25℃下的瞬间攻击率最大为0.664,而猎物处理时间最短为0.025d。瞬间攻击率在高温及低温条件下均低于25℃。但猎物处理时间则呈显出相反的趋势。基于捕食功能反应结果计算的搜索效应表明,大草蛉对二斑叶螨的搜索效应在各温度处理内随猎物密度增加而线性上升,其中以25℃下的捕食效应最高,而在15℃下的最低。本研究结果表明,大草蛉雌成虫作为一种捕食性天敌,对黄精上的二斑叶螨具有一定的控害潜能,并且其取食能力受环境温度影响显著。  相似文献   

13.
《Journal of Asia》2014,17(3):207-211
Laboratory experiments were conducted to determine the functional and numerical responses of the aphidophagous hover fly Episyrphus balteatus DeGeer (Diptera: Syrphidae) to different densities of 4th instar black bean aphids, Aphis fabae Scopoli (Homoptera: Aphididae), on broad bean, Vicia faba L. (Fabaceae). Two different-sized larvae of predators were tested in different densities of similar-sized prey to determine whether functional response parameters depended on the body sizes of predator and prey. In numerical response experiments, gravid E. balteatus females were exposed individually to different densities of 4th instars of A. fabae on cut sections of the broad bean plant, V. faba L. Logistic regression suggested a type II functional response for both larval sizes of E. balteatus. The searching efficiency (a) of the larger larvae was higher than that of the smaller ones. Prey consumption was higher, and handling time (Th) was lower for larger larvae than smaller ones. The theoretical maximum number of A. fabae nymphs eaten by the different-sized larvae was 125 and 269 nymphs per day. Larger E. balteatus larvae are more efficient predators for aphid management strategies. The reproductive numerical response, in terms of the number of eggs laid, increased curvilinearly with increasing prey density, but the proportion of eggs laid (egg number/prey density) decreased as the initial density of prey increased.  相似文献   

14.
为了明确叉角厉蝽 Eocanthecona furcellate (Wolff)对草地贪夜蛾 Spodoptera frugiperda (J.E.Smith)幼虫的控制作用,在实验室条件下测定了叉角厉蝽不同虫态对草地贪夜蛾不同龄期幼虫的捕食能力,研究了该蝽捕食功能反应、搜寻效应以及种内干扰作用。结果表明,叉角厉蝽3龄若虫、5龄若虫、成虫均可捕食草地贪夜蛾幼虫,总体呈现叉角厉蝽低龄若虫捕食草地贪夜蛾低龄幼虫的数量较多,高龄若虫和成虫捕食中间龄期幼虫数量较多的规律;叉角厉蝽3个虫态对草地贪夜蛾2~3龄幼虫的捕食功能反应均符合Holling II方程和HollingⅢ型功能反应新模型;5龄若虫对草地贪夜蛾2~3龄幼虫的捕食效能(a/Th)最强(214.0)、日最大捕食量(1/Th)最大(256.4头)。不同虫态叉角厉蝽的搜寻效应与草地贪夜蛾密度均呈负相关。建立了叉角厉蝽成虫密度、草地贪夜蛾4龄幼虫密度对捕食作用的干扰反应方程,干扰作用发生后该蝽的平均捕食量和捕食作用率均逐渐下降。本研究结果可为田间释放叉角厉蝽防治草地贪夜蛾提供依据。  相似文献   

15.
微小花蝽对温室白粉虱的捕食作用   总被引:3,自引:0,他引:3  
研究微小花蝽Orius minutus(L.)对温室白粉虱Trialeurodes vaporariorum(Westwood)的捕食作用。结果表明,微小花蝽成虫对温室白粉虱各虫态的功能反应呈HollingⅡ型。微小花蝽成虫对温室白粉虱卵、1龄和2龄混合若虫及其3龄若虫的理论最大捕食量分别为123,74和52头/d。微小花蝽成虫对温室白粉虱卵的捕食效应随捕食者个体间干扰作用的增加而下降,符合Hassel-Varley方程,捕食作用率(E)随着微小花蝽数(P)增加而呈幂指数下降,模拟模型E=0.1021P-0.3189,干扰系数为0.3189。在15~40℃的温度范围内,随着温度的升高微小花蝽成虫对温室白粉虱卵的寻找效率提高,最高达1.1990,处置时间缩短,最低达到0.0035d。  相似文献   

16.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

17.
Predation rate and numerical response are basic to any investigation of predator–prey relationships and key components in the selection of predators for biological control. The density-dependent predation rate and numerical response of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) to varying densities (5, 10, 20, 40, 60 and 80) of third-instar Aphis craccivora (Koch) (Hemiptera: Aphididae), were studied in laboratory conditions [23±1°C, 70 ± 5% relative humidity (RH), and a photoperiod of 16:8 h L:D. Predation rate data were analysed using the age-stage, two-sex consumption rate software. Net consumption rate (C0) increased by increasing prey density. The lowest and highest net consumption rates were 20.75 and 190.8 prey nymphs at densities of 5 and 80 A. craccivora. The transformation rate from prey population to predator offspring (Qp) increased by increasing prey density. The reproductive numerical response, in terms of eggs laid, increased curvilinearly with increasing prey density. Females laid 121.375 ± 4.301 eggs when exposed to the highest prey density (80) and 52.5 ± 1.544 eggs at lowest prey density (5). It can be concluded that different densities of A. craccivora influenced the reproductive performance of A. aphidimyza in terms of predation rate and numerical response.  相似文献   

18.
This study examines the effects of changes in the prey frequency and abundance on prey selection among the four instars of Myzus persicae by the predator Macrolophus pygmaeus under laboratory conditions. The central hypothesis was that M. pygmaeus will become more selective as prey density increases. It was also observed that M. pygmaeus can occasionally abandon a prey item that had already been killed (non-consumptive prey mortality). It was assumed that the frequency of this behavior would increase with the prey size and prey density. For these purposes prey selection was evaluated by simultaneously presenting all instars of M. persicae to the predator in equal proportions and at increasing densities. M. pygmaeus showed a higher predation rate and a higher preference for smaller prey instars at all prey densities. However, if the predation rate by the predator is expressed in terms of biomass consumed, then biomass gain was higher when feeding on the larger instars of M. persicae. The prey selectivity was indicated by the total prey mortality (consumptive plus non-consumptive prey mortality) as well as by the non-consumptive prey mortality, was associated with relatively high prey densities, depending on the prey instar. Therefore, we argued that the predatory impact of M. pygmaeus on the various instars of the aphid depends not only on prey traits but also on their relative abundance in a patch. Observed decreases in biomass gain from larger prey were likely the result of high prey availability at densities before saturation, which might have caused confusion in the predator’s prey selection.  相似文献   

19.
The functional response of females of the phytoseiid mite, Iphiseius degenerans (Berlese), to increasing densities of females of its prey, Tetranychus urticae Koch and Eutetranychus orientalis Klein, on bean leaves, were studied under laboratory conditions. Our results indicated that the predator consumed significantly more items of E. orientalis than of T. urticae at all densities treatments. Daily consumption of the predator increased with increasing prey density until a plateau was reached-maximum number of prey consumed was ca. 4 for T. urticae and ca. 12 for E. orientalis. A Type II functional response was determined by a logistic regression model. The highest estimated value a (instantaneous rate of attack) and the lowest value of T ( h ) (handling time) were found for the predator feeding on E. orientalis. Prey selection was evaluated by simultaneously presenting both prey species to the predator in various ratios and at increasing densities. I. degenerans showed a higher predation rate and higher preference for E. orientalis at all the ratios and prey densities tested. This may be due to the smaller size or the inactivity of E. orientalis and the inability of the predator to cope with the webbing of T. urticae. Our results suggest that I. degenerans can be considered a suitable biological control candidate based on its preference for E. orientalis in the Mediterranean region.  相似文献   

20.
In cassava fields, two species of predatory mites, Typhlodromalus aripo and T. manihoti, co-occur at the plant level and feed on Mononychellus tanajoa , a herbivorous mite. The two predator species are spatially segregated within the plant: T. manihoti dwells on the middle leaves, while T. aripo occurs in the apices of the plant during the day and moves to the first leaves below the apex at night.
To monitor the prey densities experienced by the two predator species in their micro-environment, we assessed prey and predator populations in apices and on the leaves of cassava plants in the field. Prey densities peaked from November to January and reached the lowest levels in July. They were higher on leaves than in the apices. To test whether the life histories of the two predator species are tuned to the prey density they experience, we measured age-specific fecundity and survival of the two predators under three prey density regimes (1 prey female/72 h, 1 prey female/24 h and above the predators level of satiation). T. manihoti had a higher growth rate than T. aripo at high prey densities, mainly due to its higher fecundity. T. aripo had a higher growth rate at low prey density regimes, due to its late fecundity and survival. Thus, each of the two species perform better under the prey density that characterizes their micro-habitat within the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号