首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Previous studies have shown that the diel activity pattern and functional response differed between larval instars of the carnivorous caddis, Rhyacophila dorsalis. The present study examines switching by larvae of R. dorsalis presented with different proportions of two prey types; either small (length 2–4 mm) and large (5–8 mm) Chironomus larvae for second, third, fourth and fifth instars of R. dorsalis; or Baetis rhodani (9–12 mm) and large Chironomus larvae for fourth and fifth instars. Experiments were performed in stream tanks with one Rhyacophila larva per tank and 200 prey arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40 and 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency to switch could be tested. 2. There was no prey switching in the second and third instars, with both instars always showing a preference for small over large Chironomus larvae. Prey switching occurred in the fourth and fifth instars. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. In the experiments with small and large Chironomus, the two instars switched to large larvae when their percentage of the total available prey exceeded 29% and 37% for fourth and fifth instars, respectively. In the experiments with Baetis and large Chironomus, both instars switched to Baetis larvae when their percentage of the total available prey exceeded 36%. 3. Non‐switching in second and third instars was related to their feeding strategies, both instars preferring smaller prey items. When the fourth and fifth instars foraged actively at night, they preferred larger over small Chironomus larvae, but when they behaved as ambush predators at dusk, they captured the more active Baetis larvae in preference to the more sedentary large Chironomus larvae and only switched to the latter when they were >64% of the available prey.  相似文献   

2.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

3.
SUMMARY 1. Comparisons were made of the functional responses of mature larvae of Perlodes microcephalus, Isoperla grammatica, Dinocras cephalotes and Perla bipunctata. Experiments were performed in stream tanks with natural substrata and glass bottoms, so that feeding could be observed above and below the substratum. There was one stonefly per tank and one of 10 prey densities between 20 and 200 larvae of either Chironomus sp. or Baetis rhodani per tank. Consumed prey were replaced in a first set of experiments but not in a second set. Additional experiments assessed intraspecific interference between larvae of each predator species (two to five predators per tank). 2. The number of prey eaten increased curvilinearly with prey density. The relationship was described by two models, a Type II instantaneous model and its integrated equivalent, for experiments with and without prey replacement, respectively. Handling time did not change significantly with prey density, and was the same for experiments with and without prey replacement. Estimates of attack rate were similar for the two models, but varied between prey type and predator species. Handling time varied considerably but was normally distributed for each prey type and predator species. Mean handling time varied for Chironomus from 39 s for Isoperla, which rarely ate a whole larva, to 57 s for Perlodes and for Baetis from 116 s for Perlodes to 167 s for Perla. All predators were more efficient at capturing Baetis, but the longer handling time for Baetis ensured that more Chironomus were eaten. It was concluded that these variations in attack rate and handling time were related to activity and growth differences between the predator species, and that experiments with and without prey replacement could both be relevant to the field, depending on how the predators searched for food. 3. In the interference experiments, mean handling time did not change with increasing predator density, but attack rate decreased curvilinearly, the decrease varying from negligible for Isoperla to marked for Perlodes. Prey capture decreased with decreasing attack rate. Therefore, interference reduced prey consumption, but this effect was negligible for Isoperla and increasingly severe in the order Dinocras, Perla and Perlodes.  相似文献   

4.
Two experiments on the nymphal predation of Podisus maculiventris were conducted using Spodoptera litura larvae as prey. First experiment: The predator nymphs divided into three groups were reared individually from second instar to adult in a small vessel. Each nymph in the groups 1, 2 and 3 was allowed to attack the serially growing larvae (these were supplied at the rate of one per day) from 3-, 5- and 7-day old after hatching, respectively. The first prey used for the group 1 was so small that it was not only insufficient to satiate the predator but also was difficult to be searched out. But these disadvantages were soon recuperated due to the rapid growth of the prey and all nymphs could survive to adults. The survival rate of third and fourth instar nymphs in the group 3 was severely affected by vigorous counterattack of older prey larvae. Second experiment: The predator nymphs were individually reared either in a small vessel or in a large one at various rates of food supply (the prey larvae of 7-day old were used). The functional response curves obtained for each instar of the predator took a saturation type within a certain range of the prey density. The saturation level specific to each instar was generally higher for the predator reared in the large vessel than in the small one. The functional response of fourth and fifth instar nymphs was accelerated at a high prey density, viz. 16 larvae per vessel. Even at the low rate of food supply, viz. one larva per day per predator, the predator nymphs could survive to adults, but the size of resultant adults were abnormally small.  相似文献   

5.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

6.
Abstract:  One way to understand the behavioural patterns exhibited by a predator in response to prey density is to evaluate its functional response. Such evaluation yields information about basic mechanisms of prey–predator dynamics, and is an essential component of prey–predator models. In this paper we analysed experimentally the functional response and the handling time spent by Chrysomya albiceps on different prey species and larval instars of blowflies. The type II functional response was observed when second instar larvae of Chrysomya megacephala and Chrysomya macellaria were consumed. The handling time spent by the predator was significantly different between instars and species. The implications of the functional response and handling time for the interaction dynamics of Brazilian Chrysomyinae species are discussed.  相似文献   

7.
Abstract Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed.  相似文献   

8.
1. Functional responses of predatory Toxorhynchites moctezuma (Dyar & Knab) larvae feeding on Aedes aegypti (L.) larvae (Diptera: Culicidae) were found to be type II of Holling (1959) and Rogers (1972). 2. Estimates of searching rate were generally higher for later instar predators. The search rate of second instar predators declined as prey instar increased, but fourth instar Tx. moctezuma had the highest search rate for second instar Ae. aegypti. 3. Prey handling times were higher for early instar predators and late instar prey. 4. When presented with mixtures of two instars of Ae. aegypti, second instar Tx. moctezuma showed frequency independent selectivity for the early instars, whereas fourth instar predators showed frequency independent selectivity for the late instars of Ae. aegypti. There was no evidence of frequency dependent predation. Preferences appeared to be transitive. 5. Extended random predator equations, using parameters derived from the functional responses, did not adequately describe the outcome of predation in the prey mixture experiment, even when the possibility of optimal switching behaviour was accounted for.  相似文献   

9.
Abstract. 1. Attack rates and handling times are measured by a series of separate functional response experiments for each instar of Notonecta glauca attacking four size classes of Daphnia magna as prey. The resulting attack rate and handling time surfaces are complex, with maximum attack rates for small predators attacking small prey, and large predators attacking large prey. Adult Notonecta have lower attack rates than the two previous juvenile instars (4 and 5).
2. The literature on attack rates and handling times in other predator—prey interactions that involve a series of different predator and prey size or age classes is reviewed in the context of the Notonecta-Daphnia results. The data suggest that small predator instars will usually compete with large instars for food, unless there is spatial or temporal separation between them.
3. Complex attack rate and handling time surfaces are to be expected wherever a wide range of prey and predator sizes is involved.
4. Size related changes in attack rates and handling times can introduce very complex dynamics into predator-prey interactions.  相似文献   

10.
The functional response of a predator to the density of its prey is affected by several factors, including the prey's developmental stage. This study evaluated the functional response of Podisus nigrispinus (Dallas) (Hemiptera: Heteroptera: Pentatomidae) females to fourth instars and pupae of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton (Gossypium hirsutum L., Malvaceae) in Brazil. The prey were exposed to the predator for 12 and 24 h, and in densities of 1, 6, 12, 18, 24, and 30 items per predator female. The predation data were subjected to polynomial regression logistic analysis to determine the type of functional response. Holling and Rogers' equations were used to estimate parameters such as attack rate and handling time. Podisus nigrispinus females showed functional response types II and III by preying on larvae and pupae, respectively. The attack rate and handling time did not differ between the 12 and 24 h exposure times. Predation rate was higher at higher larval and pupal densities; predation was highest at a density of 30 prey items per female, and it was similar at 18 and 24 prey per predator. Understanding the interaction of predators and their food resources helps to optimize biological control strategies. It also helps the decision‐making and the improvement of release techniques of P. nigrispinus in the field.  相似文献   

11.
Frequency dependent mosquito larval size (II and IV instars) and species selection by the water bug Diplonychus indicus against three mosquito species Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi was studied in the laboratory. The different frequencies used for each species selection were 20:30:50, 30:50:20, 50:20:30, 25:35:40, 35:40:25 and 40:25:35 of fourth instars of the respective three prey species. All nymphal water bugs (I–V instars) selected IV instar mosquito larvae and the mean proportion of late (larger) larvae eaten by the predator instars was significantly higher than the mean proportion of early (smaller) larvae eaten (F= 2.28; P < 0.001). In all six ratios used to determine the frequency dependent mosquito species selection, all the stages of the water bug selected Ae. aegypti over the other two species (F= 452.43; P < 0.001). The mean number of mosquito larvae eaten increased as its density increased based on various ratios of larvae offered. The study indicated that the predatory efficiency of D. indicus was high when Ae. aegypti was offered as prey, suggesting the utility of this mosquito predator in the control of dengue vectors.  相似文献   

12.
Small-sized predators in the aphidophagous guild of Aphis gossypii Glover colonies on hibiscus trees in Japan exploit aphids at low prey abundance. Scymnus (Pullus) posticalis Sicard beetles were the first predatory species to attack aphids in the spring, and their larvae co-occurred with larvae of Eupeodes freguens (Matsumura) syrphids in aphid-infested leaves of hibiscus for 3 weeks in absence of large-sized coccinellid predators. Larval interaction between Scymnus and syrphid predators was examined in relation to effectiveness of wax cover of Scymnus against predation from syrphids. Waxless first instar larvae were not protected but wax-covered larvae of second, third and fourth instars were protected from predation by syrphid larvae. The protection was lower in the second instar which has a thin wax cover and significantly higher in the third and fourth instars having a thick wax cover. In addition, larvae from which the wax was removed were significantly more vulnerable to predation. Vulnerability of Scymnus larvae to predation from syrphids was directly related to the thickness of wax cover. Results suggest that the wax cover of Scymnus larvae act as an effective defence mechanism against predation from syrphid larvae.  相似文献   

13.
KK-42 (1-benzyl-5-[(E)-2,6-dimethyl-1,5-heptadienyl]imidazole), administered by feeding, delayed the growth and development of nondiapause-bound and diapause-bound Ostrinia nubilalis larvae and increased the length of the instar. At doses of 80–240 ppm, 62–100% of nondiapause-bound fourth instars precociously pupated or remained as fourth instars, while 52–100% of diapause-bound fourth instars did not molt to the fifth instar. Injection of these nondiapause- and diapause-bound KK-42-fed fourth instars with ecdysone elicited a molt and resulted in the production of larval-pupal intermediates. When mature fourth instar controls were similarly injected, they molted into normal fifth instars. These results support the view that KK-42 delays/inhibits ecdysteroid production. Both eupyrene and apyrene spermiogenesis were prematurely initiated in nondiapause-bound fourth instars that were fed on medium containing 160 ppm KK-42. Fenoxycarb, a potent juvenile hormone mimic, rescued nondiapause-bound fourth instars from precocious pupation. All fenoxycarbtreated larvae either molted to the fifth instar or remained as fourth instars and eventually died. These results support the view that treatment with KK-42 inhibits JH production. When KK-42 treatment was begun in the third instar, a considerable number of nondiapause-bound and some diapause-bound third instars precociously molted to the fifth instar. There was a correlation between weight and the incidence of precocious molting in that third instars destined to skip the fourth instar attained a weight, as pharate fifth instars, of two to three times more than pharate fourth instar controls. Similarly, fourth instars that were destined to undergo precocious pupation attained a weight, as pharate pupae, that was approximately two times more than pharate fifth instar controls. More potent analogues of KK-42 may prove useful in controlling populations of 0. nubilalis by interfering with their growth, development, and metamorphosis. © 1995 Witey-Liss, Inc.
  • 1 This article is a US Government work and, as such, is, in the public domain in the United States of America.
  •   相似文献   

    14.
    Analysis of the gut contents of Procladius bellus (Loew) larvae collected in field samples indicated that it was a detrivitore‐omnivore. The observed dietary change from first and second instars (detritivore‐herbivores) to third and fourth instars (omnivores) did not suggest a change in feeding behaviour from detritivore to predator, but rather that the animal material was consumed along with larger detrital material. Small detrital material (1–15 μm) was an important dietary component and detritus in general contributed 50–70% of the overall diet. Diatoms and green algae contributed 15–20%, while blue‐green algae contributed about 10%. Animal material contributed about 5% to second and third instar larvae and 20% to fourth instar larvae.  相似文献   

    15.
    A functional response study of Chrysoperla carnea (Stephens) larvae to different densities of sugar cane whitefly Aleurolobus barodensis (Maskell) was conducted in test tubes at 26?±?2 °C, 65?±?5 % RH. Chrysoperla carnea showed two different types of functional response in larval instars. First instar exhibits type II. However, second and third larval instars revealed type III functional response. Based on modified Holling’s disk equation, the highest searching rates (a) of 0.82?±?0.0247 h?1 was found for first instar larva. For second and third larval instars, the attack coefficient (b) were 0.002?±?0.030 and 0.0025?±?0.0424 respectively. The shortest handling time (Th) per prey was observed at third instar stage (1.574?±?0.0568 h) followed by second and first instar with 1.72?±?0.0411 h and 1.919?±?0.0568 h respectively.  相似文献   

    16.
    17.
    The robber fly Mallophora ruficauda Weidemann (Diptera: Asilidae) is an important pest of apiculture in the Pampas of Argentina. As adults, they prey on honey bees and other insects, whereas the larvae are ectoparasitoids of Scarabaeidae grubs. Females of M. ruficauda lay eggs in grassland where the larvae drop to the ground after being wind‐dispersed and burrow underground searching for their hosts. A temporal asynchrony exists between the appearance of the parasitoid larvae and the host, with the parasitoid appearing earlier than the host. The present study investigates whether a strategy of synchronization with the host exists in M. ruficauda and determines which of the larval instars are responsible for it. Survival patterns and duration of the immature stages of the parasitoid are investigated to determine whether there is a modulation in the development at any time that could reduce the asynchrony. Experiments are carried out to determine the survival and duration of free‐living larval stadia in the absence of cues associated with the host. It is established that the first instar is capable of moulting to the second instar without feeding and in the absence of any cues related to the host, a unique event for parasitoids. Also, the first instar of M. ruficauda moults to the second stage within a narrow temporal window, and the second instar never moults in the absence of the host. After parasitizing a host, the second instar has the longest lifespan and is the most variable with respect to survival compared with the rest of the instars. All larval instars, except for those in the last (fifth) stadium, have a similar rate of mortality to that of second‐instar larvae. Additionally, it is established that the host is killed during the fourth (parasitoid) stadium and that the first‐ and fifth‐larval instars develop independently of the host. Finally, possible mechanisms that could aid in compensating for the asynchrony between the parasitoid and the host, promoting the host–parasitoid encounter, are discussed.  相似文献   

    18.
    We studied the prey stage preference and feeding behaviour of the first to third instar larvae and adult females ofOligota kashmirica benefica Naomi (Coleoptera: Staphylinidae), a predator of the spider miteTetranychus urticae Koch (red form) (Acari: Tetranychidae), on leaves of the kudzu vine (Pueraria lobata (Wild.) Ohwi (Leguminosae)) under laboratory conditions. The number of mites eaten increased with the growth of predator larvae. Third instar larvae preyed on all stages of spider mite, whereas first instar larvae preyed mainly on immobile stages (eggs and quiescent stages). The predator larvae showed two types of foraging behaviour (active searching and ambush behaviour) when targeting the mobile stages (larval nymph and adult stages of prey). Although no difference was found in the number of prey consumed by adult females and third instar larvae of the predator, the adult females mainly attacked and consumed the immobile stages.  相似文献   

    19.
    1. A previous study compared the functional responses to their prey and intraspecific interference in mature larvae of Perlodes microcephalus, Isoperla grammatica, Dinocras cephalotes and Perla bipunctata. The present study extends this work by assessing interspecific interference between pairs of these species in equal numbers (one, two or three larvae per species) to provide total predator densities of two, four or six larvae. Baetis larvae as prey were replaced as they were eaten, and their density per predator was varied between 20 and 200 larvae. 2. The number of prey eaten by each competing species increased curvilinearly with prey density, the relationship being well described by a Type II model. Of the two constants in the model, handling time varied considerably between species, mean values being shortest for Perlodes, slightly higher for Isoperla, and much higher for Dinocras and Perla. It was not affected significantly either by predator density or the identity of the competing species. 3. Attack rate also varied between species and decreased with predator density. This decrease was slight for Perlodes, and also for Dinocras and Perla in competition with Isoperla. The decrease in Dinocras and Perla was similar to that for intraspecific interference. 4. The decrease in attack rate was described by a convex curve for Perlodes with the other three species and for Dinocras/Perla with Isoperla, but by a concave curve (negative power function) for Isoperla competing with the other three species, and for both Dinocras and Perla in competition with Perlodes. Prey consumption also decreased with predator density, the severity of competition with different species reflecting that for attack rate. 5. A comparison with previous results for intraspecific interference showed that the latter was dominant for Perlodes in all contests and for Dinocras or Perla competing with Isoperla, whilst interspecific interference dominated for Isoperla in all contests and for Dinocras and Perla competing with Perlodes. Both types of interference were applicable to competition between Dinocras and Perla. Isoperla was the least, and Perlodes the most, aggressive of the four species with Dinocras and Perla intermediate.  相似文献   

    20.
    游兰韶  王进 《昆虫学报》1997,40(4):379-387
    拟垫跗蠼螋Proreus simulans(Stal)的生物学,包括栖息习性,越冬虫态和越冬场所,卵的历期;各龄若虫的形态特征与历期;成虫的耐饥能力,交配、产卵习性,越冬期成虫呼吸率和呼吸商等内容。捕食作用研究结果表明,该天敌的食蚜日均捕食量随龄次增大,4龄达到最大,至成虫以后保持稳定;各龄若虫及咸虫的功能反应均属H011lngⅡ型;著者最后认为拟垫跗蠼螋是一种有利用价值的捕食性天敌,并提出保护利用措施。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号