首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

2.
Related or distant species of cultivated cs are a large pool of many desirable genes. Gene transfer from these species through conventional breeding is difficult owing to post- and pre-zygotic sexual incompatibilities. Somatic hybridization via protoplast fusion is a possible alternative for gene transfer from these species to cultivated crops. Since the early days of somatic hybridization many intergeneric somatic hybrids have been developed through symmetric fusion, asymmetric fusion and microfusion. Somatic hybrids are mainly selected by using markers such as specific media or fusion parents with special features, biochemical mutants, antibiotic resistance and complementation strategy. The hybridity of the regenerants is determined based on morphological, cytological and molecular analysis. The inheritance patterns of nuclear and cytoplasmic genomes in the somatic hybrids are diverse. Nuclear DNA from both fusion parents co-exists congruously in some hybrids with translocation and rearrangement of chromosomes, but spontaneous elimination of chromosomes from either or both fusion parents has been observed very often. In asymmetric fusion, chromosome elimination is an important issue that is a complicated process influenced by many factors, such as irradiation dose, phylogenetic relatedness, ploidy level of fusion parent and regenerants. As for chloroplast genome, uniparental segregation is mainly detected, though co-existence is also reported in some cases. The mitochondrial genome, in contrast to chloroplast, undergoes recombination and very frequent rearrangements. Somatic cell fusion has potential applications for crop genetic improvement by overcoming sexual incompatibility or reproductive barriers, and by realizing novel combinations of nuclear and/or cytoplasmic genomes.  相似文献   

3.
Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat ( TRITICUM AESTIVUM L.) cv. "Jinan 177" and Italian ryegrass ( LOLIUM MULTIFLORUM Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 approximately 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.  相似文献   

4.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

5.
Summary Citrus somatic hybridization and cybridization via protoplast fusion has become an integral part of citrus variety improvement programs worldwide. Citrus somatic hybrid plants have been regenerated from more than 200 parental combinations, and several cybrid combinations have also been produced. Applications of somatic hybridization to citrus scion improvement include the production of quality tetraploid breeding parents that can be used in interploid crosses to generate seedless triploids, and the direct production of triploids by haploid + diploid fusion. Applications of somatic hybridization to citrus rootstock improvement include the production of allotetraploid hybrids that combine complementary diploid rootstocks, and to combine citrus with sexually incompatible or difficult to hybridize genera that possess traits of interest for germplasm expansion. A few somatic hybrid tetraploid breeding parents have flowered, are fertile, and are being used as pollen parents to generate triploids. Several allotetraploid somatic hybrid rootstocks are performing well in commercial field trials, and show great promise for tree size control. Seed trees of most of these somatic hybrid rootstocks are producing adequate nucellar seed for standard propagation. Somatic hybridization is expected to have a positive impact on citrus cultivar improvement efforts.  相似文献   

6.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

7.
This paper reviews recent developments in the use of molecular probes for analyzing the genetic makeup of somatic hybrids. Successful application of somatic hybridization to the interspecific transfer of traits encoded in the nucleus is still having limited success. A major difficulty is hybrid infertility, particularly in hybrids between sexually incompatible species. The formation of asymmetric hybrids is being explored as an approach for improving hybrid fertility. Evaluation of the degree of chromosome elimination and chromosome stability and instability in asymmetric hybrids is difficult when the traditional approaches of chromosome counting and isozyme analysis are used. Two new approaches are resolving this difficulty. The use of species-specific repetitive DNA probes in dot blotting and in situ hybridization to chromosomes is providing quantitative data on chromosome elimination and allows detection of translocations. Use of restriction fragment length polymorphism (RFLP) probes for analysis of hybrids between genetically mapped species makes it possible to account for the presence or absence of individual chromosomes and chromosomes arms. Wider use of such molecular probes should greatly improve our understanding of the genetics of both symmetric and asymmetric somatic hybrids and may lead to new strategies for the effective interspecific transfer of nucleus-encoded traits by protoplast fusion.  相似文献   

8.
Intergeneric somatic hybridization was performed between albino maize (Zea mays L.) protoplasts and mesophyll protoplasts of wheat (Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.  相似文献   

9.
In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro.  相似文献   

10.
以小麦品种济南177悬浮细胞系来源的原生质体与同品系胚性愈伤组织制备的原生质体混合后作为受体;以经过380μW/cm2紫外线照射1min、2min的新麦草原生质体分别作为供体,用PEG法诱导融合。组合Ⅰ(176+cha9+新麦草UV 1min)获得16个再生克隆。经过形态学、同工酶、染色体和RAPD分析,确定其全部为属间体细胞杂种。其中的5个克隆再生杂种植株。用7对小麦SSR引物对杂种克隆的叶绿体基因组进行了分析;组合Ⅱ(176+cha9+新麦草UV 2min)只获得3个克隆,且逐渐褐化死亡。表明以小麦济南177的两种培养细胞混合作受体的融合体系有利于杂种的获得及再生;紫外线对融合产物的生长发育有明显的剂量效应。  相似文献   

11.
Randomly amplified polymorphic DNA (RAPD) method was used to identify the hybrid nature of three kinds of intergeneric asymmetric somatic hybrid plants of wheat: wheat (Triticum aestivum) + Haynaldia villosa, Wheat + Leymus chinensis and wheat + Agropyron elongatum. It was shown from the electrophoresis profiles that the genome of somatic hybrid plants contained specific section genome of both parents after DNA amplification with arbitrary primers. A specific RAPD product (DNA fragment of 0.77 kbp) of A. elongatum generated with primer OPJ-12 was isolated, purified, labeled and used as a probe. Southern blot from OPJ-12 primer-generated specific section genome of the hybrid (T. aestivum + A. elongatum) hybridized to this probe (0.77 kbp) proved that they are homologous in nature. This paper also discussed the advantage of RAPD method in identification of hybrid plants, especially asymmetric somatic hybrids.  相似文献   

12.
用随机引物扩增多态DNA(RAPD)技术对三种不同组合:小麦(Triticum aestivum)( )簇毛麦(Haynaldia villosa);小麦( )羊草(Leymus chinensis)和小麦( )高冰草(Agropyron elongatum)的属间不对称杂种进行分子鉴定,不同杂种植株的基因组经随机引物扩增后,均出现双亲的多态特异产物,证实它们含有双亲的基因组。将引物OPJ-12扩增的高冰草多态特异产物(分子量为0.77bp的DNA片段)分离纯化并标记作探针,用Southern杂交证明了小麦( )高冰草杂种经OPJ-12扩增的0.77kbp特异片段与高冰草这一片段具有同源性。本文结果证明,RAPD技术可作为小麦属间不对称体细胞杂种的一种快速、简便、有效的分子鉴定方法。  相似文献   

13.
The introduction of alien genetic variation from the genus Thinopyrum through chromosome engineering into wheat is a valuable and proven technique for wheat improvement. A number of economically important traits have been transferred into wheat as single genes, chromosome arms or entire chromosomes. Successful transfers can be greatly assisted by the precise identification of alien chromatin in the recipient progenies. Chromosome identification and characterization are useful for genetic manipulation and transfer in wheat breeding following chromosome engineering. Genomic in situ hybridization (GISH) using an S genomic DNA probe from the diploid species Pseudoroegneria has proven to be a powerful diagnostic cytogenetic tool for monitoring the transfer of many promising agronomic traits from Thinopyrum. This specific S genomic probe not only allows the direct determination of the chromosome composition in wheat-Thinopyrum hybrids, but also can separate the Th. intermedium chromosomes into the J, J(S) and S genomes. The J(S) genome, which consists of a modified J genome chromosome distinguished by S genomic sequences of Pseudoroegneria near the centromere and telomere, carries many disease and mite resistance genes. Utilization of this S genomic probe leads to a better understanding of genomic affinities between Thinopyrum and wheat, and provides a molecular cytogenetic marker for monitoring the transfer of alien Thinopyrum agronomic traits into wheat recipient lines.  相似文献   

14.
Protoplast fusion technology has been utilized in many crops to generate allotetraploid somatic hybrids, and sometimes autotetraploids as a byproduct of the process. A brief history of this technology development is provided, along with a simple protocol developed for citrus, which can be easily adapted to other plants. Protoplast fusion has become a significant tool in ploidy manipulation that can be applied in various cultivar improvement schemes. In rare cases, a new somatic hybrid may have direct utility as an improved cultivar; however, the most important application of somatic hybridization is the building of novel germplasm as a source of elite breeding parents for various types of conventional crosses for both scion and rootstock improvement. Somatic hybridization is generating superior allotetraploid breeding parents for use in interploid crosses to generate seedless triploids. Seedlessness is a primary breeding objective for new fresh fruit citrus varieties, and several thousand triploid hybrids have been produced using somatic hybrids as the tetraploid parent. Protoplast fusion is also being utilized to produce somatic hybrids that combine complementary diploid rootstocks, which have shown good potential for tree size control. Tree size control has gained importance as a means of reducing harvesting costs, maximizing the efficiency of modern cold protection methodology, and facilitating the adaptation of new fruit production systems. Successful somatic hybridization in citrus rootstock improvement has enabled rootstock breeding at the tetraploid level via sexual hybridization, which can yield maximum genetic diversity in zygotic progeny upon which to impose selection for the many traits required in improved rootstock cultivars, including disease and insect resistance, broad adaptation, tree size control, and the ability to consistently produce high yields of quality fruit. Recent progress and successful examples of these applications are discussed. Finally, a discussion of the genetic potential of somatic hybrids as breeding parents, including meiotic behavior and inheritance is provided.  相似文献   

15.
Since its first development some 40 years ago, the application of the somatic hybridization technique has generated a body of hybrid plant material involving a wide combination of parental species. Until the late 1990s, the technique was ineffective in wheat, as regeneration from protoplasts was proving difficult to achieve. Since this time, however, a successful somatic hybridization protocol for wheat has been established and used to generate a substantial number of both symmetric and asymmetric somatic hybrids and derived materials, especially involving the parental combination bread wheat and tall wheatgrass (Thinopyrum ponticum). This review describes the current state of the art for somatic hybridization in wheat and focuses on its potential application for wheat improvement.  相似文献   

16.
Summary Although somatic hybridization techniques are being ignored by variety improvement programs for most commodities, their contribution to citrus variety improvement continnes to expland and with increasing complexity. Citrus is, one of the few commodities where somatic hybridization is reaching its predicted potential, as somatic hybrids are now possible from most desirable parental combinations. Somatic hybrid citrus plants have been produced from more than 250 parental combinations, including more than 130 at the CREC. The CREC hybrids include 34 from sexually compatible intergeneric combinations, 16 from sexually incompatible combinations, and 81 interspecific combinations. The objective of this report is to demonstrate the impact of somatic hybridization on citrus improvement programs, and to discuss its potential with other commodities. For citrus scion improvement, several applications are aimed at the development of improved seedless fresh fruit varieties, and these include symmetric somatic hybridization, haploid+diploid fusion, targeted cybridization to transfer cytoplasmic male sterility (mtCMS) from Satsuma mandarin, and triploidy via interploid crosses using somatic hybrid allotetrapoid breeding parents. For rootstock improvement symmetric somatic hybridization provides an opportunity to hybridize complementary rootstocks without breaking up successful gene combinations. Rootstock somatic hybridization is providing opportunities for improving disease and inseet resistance, soil adaptation, and tree size control. Wide somatic hybridization provides an opportunity for gene transfer from related species, including some that are sexually incompatible. Extensive field research on citrus somatic hybrid rootstocks combined with emerging molecular analyses of citrus has allowed for the development of additional strategies for rootstock improvement. These include rootstock breeding and selection, at the tetraploid level using somatic hybrid parents, and the resynthesis of important rootstocks at the tetraploid level via fusion of selected superior parents. Ongoing examples of each strategy will be provided, along with ideas for extending the technology to other commodities.  相似文献   

17.
Suspension-derived protoplasts of Agropyron elongatum irradiated by ultra-violet light (UV) were fused with the suspension-derived protoplasts of Triticum astivum using PEG. Fertile intergeneric somatic hybrid plants were produced and various hybrid lines have been selected and propagated in successive generations. Their hybrid nature was confirmed by analysis of profiles of isozymes, RAPDs, and 5S rDNA spacer sequences, and via GISH analysis. By the procedure described, the phenotype and chromosome number of wheat could be maintained besides transfer of a few chromosomes and chromosomal fragments from the donor A. elongatum. The results above indicated that highly asymmetric fertile hybrid plants and hybrid progenies of wheat were produced via somatic hybridization.  相似文献   

18.
苜蓿红豆草属间体细胞杂种的分子生物学鉴定   总被引:12,自引:0,他引:12  
徐子勤   《生物工程学报》2000,16(2):173-178
通过原生质体融合和培养获得苜蓿红豆草属间体细胞杂种植株。采用一种简便方法从杂种组织再生植株叶片、红豆草羟脯氨酸抗性系再生植株叶片和苜蓿根癌农杆菌702转化系愈伤组织提取DNA用于RAPD和Southern杂交分析。随机引物扩增结果显示两种亲本的RAPD多态具有明显差异。在所用20种随机引物中,6种产生较多的DNA片段。杂种组织具有两种亲本特有的DNA片段,但倾向于排除红豆草亲本的染色体,表明该杂种为非对称杂种,两种亲本染色体之间可能发生了重组。由于红豆草DNA的介入,杂种组织表现出较强的分化能力。分别利用RAPD扩增得到的OPA141000bp红豆草羟脯氨酸抗性系特异产物和OPA141600bp苜蓿根癌农杆菌702转化系特异产物为探针进行Southern分子杂交,证明杂种组织同时具有这两种DNA片段的同源序列。  相似文献   

19.
Cai Y  Xiang F  Zhi D  Liu H  Xia G 《Plant cell reports》2007,26(10):1809-1819
In order to genotype hybrid genomes of distant asymmetric somatic hybrids, we synthesized hybrid calli and plants via PEG-mediated protoplast fusion between recipient tall fescue (Festuca. arundinacea Schreb.) and donor wheat (Triticum aestivum L.). Seventeen and 25 putative hybrid clones were produced from the fusion combinations I and II, each with the donor wheat protoplast treated by UV light for 30 s and 1 min, respectively. Isozyme and RAPD profiles confirmed that ten hybrid clones were obtained from combination I and 19 from combination II. Out of the 29 hybrids, 12 regenerated hybrid plants with tall fescue phenotype. Composition and methylation-variation of the nuclear and cytoplasmic genomes of some hybrids, either with or without regenerative ability, were compared by genomic in situ hybridization, restriction fragment length polymorphism, and DNA methylation-sensitive amplification polymorphism. Our results indicated that these selected hybrids all contained introgressed nuclear and cytoplasmic DNA as well as obvious methylation variations compared to both parents. However, there were no differences either in nuclear/cytoplasmic DNA or methylation degree between the regenerable and non-regenerable hybrid clones. We conclude that both regeneration complementation and genetic material balance are crucial for hybrid plant regeneration.  相似文献   

20.
以失去植株再生能力的小麦单倍体愈伤组织和羊草二倍体愈伤组织为材料,游离原生质体,并用紫外线自理2羊草原生质体,用PEG法融合,对融合克隆进行染色体和同工酶分析,在已贩26个克隆中有21个是杂种,其中有一个克隆再生出短命小植株,结果 体小麦与二倍体草的不对称融合虽然再生互补效应不如二倍体小麦,然而杂种优先生长的现象仍然比较明显。如果改善实验条件和双亲原始的再生能力,这种融合方式仍然可以利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号