首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
人血小板衍生生长因子BB亚型包涵体复性与纯化   总被引:1,自引:0,他引:1  
目的:优化人血小板衍生生长因子BB亚型(PGDF-BB)包涵体复性方法与纯化条件,获得具有较好生物活性的重组PGDF-BB蛋白。方法:对PGDF-BB包涵体以梯度尿素进行变性,选择最佳包涵体变性浓度;比较不同复性条件下的复性率,稳定PGDF-BB包涵体复性方法;参照该蛋白的理化性质,选择适合PGDF-BB重组蛋白的纯化方法。结果:原核系统内实现了PGDF-BB的高表达;通过优化包涵体复性方法,重组蛋白的包涵体复性率可达40%以上;经过多个纯化方法相结合,PGDF-BB的纯度达到95%。结论:通过实验条件的优化,提高了PGDF-BB包涵体复性率,获得高纯度、高生物活性的重组PGDF-BB蛋白。  相似文献   

2.
重组蛋白包涵体的复性研究   总被引:21,自引:0,他引:21  
重组蛋白在大肠杆菌中的高表达往往形成不可溶、无生物活性的包涵体,需经过变性溶解后,在适当条件下复性形成天然的构象,才可恢复其生物活性.变复性实验是建立在对蛋白质体外折叠机制的了解的基础上.根据近年来对蛋白质折叠机制的认识和重组蛋白包涵体在复性方面的主要进展,论述以下3个方面的内容:1)蛋白质在细胞内的折叠机制;2)蛋白质体外折叠机制;3)蛋白质复性的策略和方法.  相似文献   

3.
包涵体蛋白体外复性的研究进展   总被引:39,自引:1,他引:38  
方敏  黄华樑   《生物工程学报》2001,17(6):608-612
外源基因在大肠杆菌中高水平表达时 ,通常会形成无活性的蛋白聚集体即包涵体。包涵体富含表达的重组蛋白 ,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠 ,才能够得到生物活性蛋白。近年来 ,发展了许多特异的策略和方法来从包涵体中复性重组蛋白。最近的进展包括固定化复性以及用一些低分子量的添加剂等来减少复性过程中蛋白质的聚集 ,提高活性蛋白的产率。  相似文献   

4.
重组人尿激酶原的体外变复性研究   总被引:4,自引:0,他引:4  
朱慧  刘伟  史蔚  薛宇鸣  马忠   《生物工程学报》2000,16(2):150-154
重组人尿激酶原在大肠杆菌中过量表达时形成不溶物包涵体,需经体外变复性后才能获得生物活性。本文旨在提高包涵体中变性尿激酶原的复性效率,通过对pH,温度,变性剂种类及浓度,蛋白浓度,以及巯基氧化还原对的比率等的定性定量分析,研究重组人尿激酶原体外变复性的基本条件,并比较了添加某些非特异有效成分,脉冲稀释,梯度透析等方法对提高重组人尿激酶原体外变复性效率的作用。确定了重组人尿激酶原体外变复性的适宜方法,复性效率可达20%~30%。  相似文献   

5.
包涵体复性研究进展(英文)   总被引:10,自引:2,他引:8  
用基因工程技术在大肠杆菌高水平表达重组蛋白时,通常形成无生物活性的包涵体。包涵体在体外经分离、溶解与重折叠后可实现复性,表现为具有生物活性的蛋白。总结了包涵体的相关复性技术,重点介绍重折叠的最新进展情况 。  相似文献   

6.
包涵体蛋白的分离和色谱法体外复性纯化研究进展   总被引:2,自引:0,他引:2  
重组蛋白在大肠杆菌中表达多为无活性的包涵体形式,须经洗涤、溶解、复性后才能得到生物活性蛋白。综述了近年来包涵体蛋白分离纯化和复性技术研究进展,重点讨论了色谱法复性技术的应用,包括尺寸排阻色谱、亲和色谱、离子交换色谱、疏水相互作用色谱、固定化脂质体色谱、扩张床吸附色谱的进展情况。  相似文献   

7.
包涵体蛋白复性的几种方法   总被引:6,自引:0,他引:6  
外源基因在大肠杆菌中高水平表达时,通常会形成无活性的蛋白聚集体即包涵体。包涵体富含表达的重组蛋白,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠,才能够得到生物活性蛋白。  相似文献   

8.
目的:在原核系统内获得高表达的人血小板衍生生长因子BB(PGDF-BB),并对形成的包涵体进行复性。方法:对PGDF-BB核酸编码序列进行优化,构建pET-22b-PGDF-BB表达载体,以提高PCDF-BB的表达量;优化PGDF-BB包涵体复性条件,提高蛋白复性率和生物活性。结果:构建了pET-22b-PGDF-BB高效表达载体,原核表达的重组人PGDF-BB占细菌总蛋白的25%,PGDF-BB包涵体复性率达到15%。结论:对表达序列的优化设计可显著提高蛋白的表达量,复性方法的改良提高了蛋白的复性率和生物活性。  相似文献   

9.
原核基因工程中的包涵体   总被引:4,自引:0,他引:4  
包涵体是原核基因工程的特有产物,其中表达的蛋白产物是以无活性、不溶解的形式存在。包涵体特性、蛋白回收及活性恢复是生物工程研究的重要课题。文章对包涵体特性、回收及产物提取,重组蛋白的复性及纯化作了综述。  相似文献   

10.
[目的]原核表达及制备重组光滑鳖甲丝氨酸蛋白酶抑制剂(Ap Serpin-FA72),探索包涵体最优复性条件与最适酶反应条件。[方法]采用超声破碎获得大量包涵体,通过包涵体的洗涤、包涵体的溶解方法对包涵体进行纯化,获得高纯度的包涵体进行复性液成分与复性方法的摸索。测定Trx A-Ap Serpin-FA72对胰蛋白酶的IC50、最适反应p H和最适反应温度。[结果]在32℃、180 r/min、0. 4 mmol/L IPTG浓度下以沉淀形式表达大量蛋白,通过包涵体复性在含有L-精氨酸复性液中获得有生物活性的Trx A-Ap Serpin-FA72,对胰蛋白酶的IC50为0. 48μmol/L,p H在7~9,温度在60℃时有较高的抑制活性。[结论]L-精氨酸是复性液中重要的组成部分,复性的重组蛋白Trx A-Ap SerpinFA72对胰蛋白酶有较强的抑制能力,是一种热稳定较好的弱碱性胰蛋白酶抑制剂。  相似文献   

11.
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.  相似文献   

12.
The overexpression of recombinant proteins in Escherichia coli leads in most cases to their accumulation in the form of insoluble aggregates referred to as inclusion bodies (IBs). To obtain an active product, the IBs must be solubilized and thereafter the soluble monomeric protein needs to be refolded. In this work we studied the solubilization behavior of a model-protein expressed as IBs at high protein concentrations, using a statistically designed experiment to determine which of the process parameters, or their interaction, have the greatest impact on the amount of soluble protein and the fraction of soluble monomer. The experimental methodology employed pointed out an optimum balance between maximum protein solubility and minimum fraction of soluble aggregates. The optimized conditions solubilized the IBs without the formation of insoluble aggregates; moreover, the fraction of soluble monomer was approximately 75% while the fraction of soluble aggregates was approximately 5%. Overall this approach guarantees a better use of the solubilization reagents, which brings an economical and technical benefit, at both large and lab scale and may be broadly applicable for the production of recombinant proteins.  相似文献   

13.
The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the β-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.  相似文献   

14.
Many protein species produced in recombinant bacteria aggregate as insoluble protein clusters named inclusion bodies (IBs). IBs are discarded from further processing or are eventually used as a pure protein source for in vitro refolding. Although usually considered as waste byproducts of protein production, recent insights into the physiology of recombinant bacteria and the molecular architecture of IBs have revealed that these protein particles are unexpected functional materials. In this Opinion article, we present the relevant mechanical properties of IBs and discuss the ways in which they can be explored as biocompatible nanostructured materials, mainly, but not exclusively, in biocatalysis and tissue engineering.  相似文献   

15.
Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.  相似文献   

16.
ABSTRACT: A growing number of insights on the biology of bacterial inclusion bodies (IBs) have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70), enzymes (catalase and dihydrofolate reductase), grow factors (leukemia inhibitory factor, LIF) and structural proteins (the cytoskeleton keratin 14) have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus) empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills), for their extra- or intra-cellular release in medicine and cosmetics.  相似文献   

17.
The tick Boophilus microplus is a bovine ectoparasite present in tropical and subtropical areas of the world and the use of vaccines is a promising method for tick control. BYC is an aspartic proteinase found in eggs that is involved in the embryogenesis of B. microplus and was proposed as an important antigen in the development of an anti-tick vaccine. The cDNA of BYC was amplified by PCR and cloned for expression in two forms with and without thioredoxin fusion protein (Trx), coding recombinant proteins named rBYC-Trx and rBYC, respectively. Expression, solubility, and yields of the two forms were analyzed. The recombinant proteins were expressed in inclusion bodies (IBs) and three denaturant agents (N-lauroyl sarcosine, guanidine hydrochloride, and urea) were tested for IBs solubilization. The N-lauroyl sarcosine solubilized 90.4 and 92.4% of rBYC-Trx and rBYC IBs, respectively, and was the most efficient denaturant. Two recombinant forms were affinity-purified by Ni2+-Sepharose under denaturing conditions. After dialysis, the yield of soluble protein was 84.1% for r-BYC-Trx and 5.9% for rBYC. These proteins were immune-reactive against sera from rabbit, mouse, and bovine previously immunized with native BYC, which confirms the antigenicity of the recombinant BYCs expressed in the Escherichia coli system.  相似文献   

18.
Inclusion bodies (IBs) are commonly formed in Escherichiacoli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid–inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs.  相似文献   

19.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

20.
Protein refolding is still a puzzle in the production of recombinant proteins expressed as inclusion bodies (IBs) in Escherichia coli. Gradient size exclusion chromatography (SEC) is a recently developed method for refolding of recombinant proteins in IBs. In this study, we used a decreasing urea gradient SEC for the refolding of recombinant human interferon ??-2a (rhIFN??-2a) which was overexpressed as IBs in E. coli. In chromatographic process, the denatured rhIFN??-2a would pass along the 8.0?C3.0 M urea gradient and refold gradually. Several operating conditions, such as final concentration of urea along the column, gradient length, the ratio of reduced to oxidized glutathione and flow rate were investigated, respectively. Under the optimum conditions, 1.2 × 108 IU/mg of specific activity and 82% mass recovery were obtained from the loaded 10 ml of 1.75 mg/ml denatured protein, and rhIFN??-2a was also purified during this process with the purity of higher than 92%. Compared with dilution method, urea gradient SEC was more efficient for the rhIFN??-2a refolding in terms of specific activity and mass recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号