首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
高粱是一种抗旱性较强的禾谷类作物。本研究在高粱中克隆到一个全长为693 bp的编码ATP合成酶E亚基的基因(SbATPase-E)。在高粱幼苗期,SbATPase-E基因受Na Cl和脱落酸(ABA)处理诱导上调表达。该基因在拟南芥中过量表达可提高转基因植株的耐旱性和耐盐性,在逆境胁迫条件下转基因拟南芥植株较野生型植株根系发达,可能是转基因植株耐旱性和耐盐性提高的主要原因。在干旱胁迫条件下,转基因植株中DREB2A、P5CS1、RD29A、RAB18和ABI1基因的表达量相对于野生型植株中的表达量提高更为显著;在高盐处理条件下,转基因植株中SOS1和SOS2基因的表达量也较野生型植株中的表达量明显提高。这些抗逆相关基因的上调表达可能是转基因植株抗逆性提高的主要分子机制。  相似文献   

7.
8.
9.
MYB类转录因子在调控逆境应答基因的表达起着重要的作用, 是最大的植物转录因子之一。文章通过同源基因克隆方法和RACE(Rapid-amplification of cDNA ends)技术, 以毛竹幼苗为材料, 获得一个MYB类转录因子, 命名PeMYB2。氨基酸序列分析表明, PeMYB2具有典型的R2R3-MYB特征, N端含有两个串联重复保守结构域, C端含有一个膜蛋白DUF3651; 进化树分析表明, PeMYB2与水稻OsMYB18序列相似性最高, 达到85.98%; 酵母单杂实验表明, PeMYB2具有转录激活功能。将PeMYB2转化拟南芥对其功能进行分析, 获得7株转基因纯合体植株。比较转基因和野生型拟南芥表型发现, PeMYB2的过量表达使转基因拟南芥出现矮化、晚花的现象; 非生物胁迫处理(盐胁迫、干旱胁迫、低温胁迫)结果表明, 转基因拟南芥中PeMYB2的过量表达, 导致转基因植株对盐胁迫和低温胁迫有更高的耐性, 但是对低温胁迫的耐受性没有明显的变化; 进一步通过盐胁迫信号通路相关Marker基因(NXH1、SOS1、RD29A、COR15A)的定量PCR实验验证, 发现PeMYB2对下游这些抗逆基因的表达具有调控作用。上述实验结果表明, 毛竹PeMYB2可参与非生物胁迫调控, 对毛竹盐胁迫和低温胁迫的响应起着重要的作用。  相似文献   

10.
11.
12.
为探讨H+-焦磷酸酶编码基因对甜菜磷吸收和抗性的影响,实现优良基因在甜菜基因工程中的利用,研究在甜菜中超表达拟南芥液泡膜H+-焦磷酸酶编码基因AVP1,对转基因甜菜分析其耐低磷、耐盐性和抗旱性。结果显示,AVP1基因在甜菜植株的叶片和块根中表达,且在逆境胁迫下增强表达量响应胁迫;低磷处理条件下,转基因甜菜与野生型甜菜相比具有更高的含磷量,可提高甜菜对磷的吸收利用效率;干旱、盐胁迫处理条件下,AVP1基因在转基因甜菜中显著上升,在盐胁迫或干旱处理条件下,转基因植株的生长受抑程度相对较轻。随着盐和干旱胁迫的加剧,转基因植株体内MDA含量与野生型植株相比较低而脯氨酸含量显著增加,AVP1基因可通过减轻逆境对甜菜细胞膜的损伤及提高甜菜细胞的渗透调节能力,进而增强甜菜对高盐和干旱胁迫的抗性。  相似文献   

13.
过表达TaLEA1和TaLEA2基因提高转基因拟南芥的耐盐性   总被引:1,自引:0,他引:1  
我国土壤盐碱化日益严重,对我国的粮食安全造成了严重威胁。耐盐基因挖掘对作物耐盐育种非常重要。LEA蛋白家族是一个多基因家族,在植物应对非生物胁迫中发挥重要作用。本课题组前期研究阐明小麦TaLEA1基因在拟南芥中过表达可以提高转基因植物的耐盐性和抗旱性。本研究系统分析了小麦TaLEA2基因表达蛋白的理化性质、基因表达模式及启动子功能区域,并在拟南芥中过表达TaLEA2基因及共表达TaLEA1和TaLEA2基因,分析TaLEA2基因的抗逆功能及2个LEA基因的抗逆效果。结果表明,TaLEA2基因的表达产物属于第3组LEA蛋白,是稳定的亲水蛋白,富含α-螺旋、β-转角等结构。TaLEA2基因在小麦根、茎、叶、花、种子等不同组织中均有表达,盐胁迫条件诱导其高表达。在拟南芥中过表达TaLEA2基因,或过表达TaLEA1和TaLEA2基因都能够提高转基因拟南芥的耐盐性和抗旱性,转基因株系的种子萌发率、根长及叶绿素含量显著高于野生型,且双基因过表达的转基因植物的抗逆能力高于单个基因过表达株系。本研究结果为LEA基因抗逆机理的研究和多基因共转提高植物抗逆性提供了重要信息。  相似文献   

14.
Oh SJ  Song SI  Kim YS  Jang HJ  Kim SY  Kim M  Kim YK  Nahm BH  Kim JK 《Plant physiology》2005,138(1):341-351
Rice (Oryza sativa), a monocotyledonous plant that does not cold acclimate, has evolved differently from Arabidopsis (Arabidopsis thaliana), which cold acclimates. To understand the stress response of rice in comparison with that of Arabidopsis, we developed transgenic rice plants that constitutively expressed CBF3/DREB1A (CBF3) and ABF3, Arabidopsis genes that function in abscisic acid-independent and abscisic acid-dependent stress-response pathways, respectively. CBF3 in transgenic rice elevated tolerance to drought and high salinity, and produced relatively low levels of tolerance to low-temperature exposure. These data were in direct contrast to CBF3 in Arabidopsis, which is known to function primarily to enhance freezing tolerance. ABF3 in transgenic rice increased tolerance to drought stress alone. By using the 60 K Rice Whole Genome Microarray and RNA gel-blot analyses, we identified 12 and 7 target genes that were activated in transgenic rice plants by CBF3 and ABF3, respectively, which appear to render the corresponding plants acclimated for stress conditions. The target genes together with 13 and 27 additional genes are induced further upon exposure to drought stress, consequently making the transgenic plants more tolerant to stress conditions. Interestingly, our transgenic plants exhibited neither growth inhibition nor visible phenotypic alterations despite constitutive expression of the CBF3 or ABF3, unlike the results previously obtained from Arabidopsis where transgenic plants were stunted.  相似文献   

15.
16.
Although calcium is a critical component in the signal transduction pathways that lead to stress gene expression in higher plants, little is known about the molecular mechanism underlying calcium function. It is believed that cellular calcium changes are perceived by sensor molecules, including calcium binding proteins. The calcineurin B-like (CBL) protein family represents a unique group of calcium sensors in plants. A member of the family, CBL1, is highly inducible by multiple stress signals, implicating CBL1 in stress response pathways. When the CBL1 protein level was increased in transgenic Arabidopsis plants, it altered the stress response pathways in these plants. Although drought-induced gene expression was enhanced, gene induction by cold was inhibited. In addition, CBL1-overexpressing plants showed enhanced tolerance to salt and drought but reduced tolerance to freezing. By contrast, cbl1 null mutant plants showed enhanced cold induction and reduced drought induction of stress genes. The mutant plants displayed less tolerance to salt and drought but enhanced tolerance to freezing. These studies suggest that CBL1 functions as a positive regulator of salt and drought responses and a negative regulator of cold response in plants.  相似文献   

17.
Fu J  Zhang DF  Liu YH  Ying S  Shi YS  Song YC  Li Y  Wang TY 《PloS one》2012,7(2):e31101
Plasma membrane protein 3 (PMP3), a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca(2+). Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants.  相似文献   

18.
The proteins of the MYB superfamily play central roles in developmental processes and defence responses in plants. Sixty unique wheat MYB genes that contain full-length cDNA sequences were isolated. These 60 genes were grouped into three categories, namely one R1R2R3-MYB, 22 R2R3-MYBs, and 37 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the 22 wheat R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily among wheat, rice, and Arabidopsis revealed that the putative functions of some wheat MYB proteins were clustered into the Arabidopsis functional clades. Tissue-specific expression profiles showed that most of the wheat MYB genes were expressed in all of the tissues examined, suggesting that wheat MYB genes take part in multiple cellular processes. The expression analysis during abiotic stress identified a group of MYB genes that respond to one or more stress treatments. The overexpression of a salt-inducible gene, TaMYB32, enhanced the tolerance to salt stress in transgenic Arabidopsis. This study is the first comprehensive study of the MYB gene family in Triticeae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号