首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Oh SJ  Song SI  Kim YS  Jang HJ  Kim SY  Kim M  Kim YK  Nahm BH  Kim JK 《Plant physiology》2005,138(1):341-351
Rice (Oryza sativa), a monocotyledonous plant that does not cold acclimate, has evolved differently from Arabidopsis (Arabidopsis thaliana), which cold acclimates. To understand the stress response of rice in comparison with that of Arabidopsis, we developed transgenic rice plants that constitutively expressed CBF3/DREB1A (CBF3) and ABF3, Arabidopsis genes that function in abscisic acid-independent and abscisic acid-dependent stress-response pathways, respectively. CBF3 in transgenic rice elevated tolerance to drought and high salinity, and produced relatively low levels of tolerance to low-temperature exposure. These data were in direct contrast to CBF3 in Arabidopsis, which is known to function primarily to enhance freezing tolerance. ABF3 in transgenic rice increased tolerance to drought stress alone. By using the 60 K Rice Whole Genome Microarray and RNA gel-blot analyses, we identified 12 and 7 target genes that were activated in transgenic rice plants by CBF3 and ABF3, respectively, which appear to render the corresponding plants acclimated for stress conditions. The target genes together with 13 and 27 additional genes are induced further upon exposure to drought stress, consequently making the transgenic plants more tolerant to stress conditions. Interestingly, our transgenic plants exhibited neither growth inhibition nor visible phenotypic alterations despite constitutive expression of the CBF3 or ABF3, unlike the results previously obtained from Arabidopsis where transgenic plants were stunted.  相似文献   

4.
5.
6.
Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.  相似文献   

7.
8.
Huang J  Wang MM  Jiang Y  Bao YM  Huang X  Sun H  Xu DQ  Lan HX  Zhang HS 《Gene》2008,420(2):135-144
The A20/AN1-type zinc finger protein family is conserved in animals and plants. Using human AWP1 protein as a query, we identified twelve A20/AN1-type zinc finger proteins in japonica rice. Most of these genes were constitutively expressed in leaves, roots, culms and spikes. Through microarray analysis, it was found that four genes (ZFP177, ZFP181, ZFP176, ZFP173), two genes (ZFP181 and ZFP176) and one gene (ZFP157) were significantly induced by cold, drought and H(2)O(2) treatments, respectively. Further expression analysis showed that ZFP177 was responsive to both cold and heat stresses, but down-regulated by salt. The subcellular localization assay indicated that ZFP177 was localized in cytoplasm in tobacco leaf and root cells. Yeast-one hybrid assay showed that ZFP177 lacked trans-activation potential in yeast cells. Overexpression of ZFP177 in tobacco conferred tolerance of transgenic plants to both low and high temperature stresses, but increased sensitivity to salt and drought stresses. Further we found expression levels of some stress-related genes were inhibited in ZFP177 transgenic plants. These results suggested that ZFP177 might play crucial but differential roles in plant responses to various abiotic stresses.  相似文献   

9.
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.  相似文献   

10.
11.
A microarray analysis of the salt-resistant wheat mutant, RH8706-49, revealed a salt-induced gene containing a conserved DUF581 domain. The gene was cloned and designated as Triticum aestivum salt-related hypothetical protein (TaSRHP) and submitted to GenBank (accession no. GQ476575). Over-expression of TaSRHP in wild-type Arabidopsis thaliana cv. Columbia resulted in enhanced resistance to both salt and drought stresses. The sensitivity of the transgenic A. thaliana to abscisic acid (ABA) was also increased compared to that of wild-type plants. Furthermore, transgenic plants accumulated more K+ and proline and had a higher osmotic potential and lower Na+ content than untransformed plants. Real-time quantitative PCR analysis indicated that expression of TaSRHP was affected by salt, drought, cold, ABA, and other stresses, and expression of other stress-related genes in the transgenic plants differed from those of the control. Results indicate that the wheat TaSRHP gene may enhance the tolerance of plants to multiple abiotic stresses.  相似文献   

12.
13.
14.
Populus species are the most important timber trees over the Northern hemisphere. Most of them are cold- and drought-sensitive except the Populus euphratica Oliv. Here, a calcium-dependent protein kinase (CDPK) gene cloned from P. euphratica, designated as PeCPK10, was rapidly induced by salt, cold, and drought stresses. The protein encoded by PeCPK10 was localized within the nucleus and cytosol, which may be important for its specific regulation in cellular functions. To elucidate the physiological functions of PeCPK10, we generated transgenic Arabidopsis plants overexpressing PeCPK10. The results showed that PeCPK10-transgenic lines experienced better growth than vector control plants when treated with drought. Stronger abscisic acid-induced promotion of stomatal closing has been showed in transgenic lines. Particularly, overexpression of PeCPK10 showed enhanced freezing tolerance. Constitutive expression of PeCPK10 enhanced the expression of several abscisic acid-responsive genes and multiple abiotic stress-responsive genes such as RD29B and COR15A. Accordingly, a positive regulator responsive to cold and drought stresses in P. euphratica is proposed.  相似文献   

15.
16.
17.
18.
19.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while l ‐ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co‐expressing stylo 9‐cis‐epoxycarotenoid dioxygenase (SgNCED1) and yeast d ‐arabinono‐1,4‐lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild‐type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co‐expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought‐responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold‐responsive genes, but not in SgNCED1 plants. Co‐expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold‐responsive genes. Our result suggests that co‐expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号