首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical activity of the human quadriceps muscle during maximal incremental cycle ergometry was investigated by mechanomyography (MMG). MMG and surface electromyography (EMG) recordings of vastus lateralis muscle activity were obtained from nine males. Cycle ergometry was performed at 60 rev/min and work load was incremented step wise by 20 W (3.2 Nm) every minute until volitional fatigue. The mean amplitudes of MMG (mMMG) and EMG (mEMG) during the contraction phase were calculated from the last six contractions in each load. The duration, load and work rate of exercise at exhaustion were 13.3 (1.6) min, 44.1 (5.5) Nm, 276.7 (34.7) W, respectively. A linear relationship between mMMG and load was evident in each subject (r = 0.868–0.995), while mEMG seemed to dissociate as the load became greater. In the grouped mean data, mMMG was linearly related to load whether aligned to the absolute (r = 0.995) or maximal (r = 0.995) load. Involvement of the noise component was further investigated by studying passive cycling by four subjects. Pedals were rotated passively for the first half of each stage (PAS) and the subject then pushed the pedals for the second half (ACT). In the lighter load region, the mMMG of ACT was as small as that of PAS. However, the change in the mMMG of PAS was very small compared with that of ACT. In conclusion, this study demonstrates a linear relationship between the mMMG of the quadriceps muscle and work load during maximal incremental cycle ergometry. The effect of movement noise was thought to be small and stable. Accepted: 22 April 1997  相似文献   

2.
The purpose of this study was to examine the effects of moment of antagonistic muscle on the resultant joint moment during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum eccentric and concentric knee extension and flexion efforts on a Biodex dynamometer at 0.52 rad · s−1 (30° · s−1). Electromyographic (EMG) activity of vastus medialis and biceps femoris (hamstrings) was also recorded. The antagonistic moment of the hamstrings was determined by recording the integrated EMG (iEMG)/moment relationship at different levels of muscle effort. The iEMG/moment curves were fitted using second-degree polynomials. The polynomials were then used to predict the antagonistic moment exerted by the hamstrings from the antagonist iEMG. The antagonistic moment had a maximum of 42.92 Nm and 28.97 Nm under concentric and eccentric conditions respectively; paired t-tests indicated that this was a significant difference (P < 0.05). These results indicate that the resultant joint moment of knee extensors is the result of both agonist and antagonist muscle activation. The greater antagonist muscle activity under concentric activation conditions may be partly responsible for the lower resultant joint concentric moment of knee extensors compared with the corresponding eccentric activation. The antagonist moment significantly affects comparisons between the isokinetic moments and agonist EMG and in vitro force measurements under different testing (muscle action and angular velocity) conditions. Accepted: 25 February 1997  相似文献   

3.
This study examined the control of ventilation during repetitive bouts of isometric exercise in simulated sailing. Eight male sailors completed four successive 3-min bouts of similar isometric effort on a dinghy simulator, bouts were separated by 15-s rest intervals. Quadriceps muscle integrated electromyograph activity (iEMG) was recorded during each bout and expressed as a percentage of activity during maximal voluntary contraction (%iEMGmax). From the first to the fourth bout, the 3-min mean averages for ventilation and for %iEMGmax increased from 19.8 (SEM 1.1) to 37.5 (SEM 3.0) l · min–1 and from 31 (SEM 4) to 39 (SEM 4)% respectively; also, ventilation and %iEMGmax over each minute throughout the four bouts were significantly correlated (r = 0.85;P < 0.05). Progressive hyperventilation reduced the mean end-tidal partial pressure of carbon dioxide from 5.0 (SEM 0.3) kPa during bout 1 to 4.3 (SEM 0.4) kPa during bout 4 [37.7 (SEM 2.0) to 32.4 (SEM (3.0) mmHg]. From the first to the fourth bout the end-of-bout blood lactate concentration did not increase significantly although the concentration from the third bout onwards was significantly greater than at rest. The results suggested that the development of muscle fatigue, which was enhanced by the insufficiency of recovery during the 15-s intervals and mirrored in the progressive increase in iEMG, was linked with stimuli causing progressive hyperventilation. Though these changes in ventilation and iEMG could not be associated with changes in blood lactate concentration, they could both have been related to accumulating metabolites within the muscles themselves.  相似文献   

4.
Integrated electromyography (iEMG) of the m. vastus lateralis was analysed during cycle ergometry in male subjects (n = 8). Two work trials were conducted, one under normoxia (N), the other under environmental normobaric hypoxia (EH in which the oxygen fraction in inspired gas = 0.116), each trial lasting 10 min. The absolute power output (180 W) was the same for both trials and was equivalent to 77 (4)% of maximum heart rate in trial N. Maximal voluntary isometric contractions were performed after each trial to assess changes in force, muscle fibre conduction velocity (MFCV), electromechanical delay (EMD), median frequency of EMG (MF) and maximal iEMG (iEMGmax). Biopy samples of muscle were obtained from the m. vastus medialis before testing. Myosin heavy chain (MHC) differences were determined through sodium dodecyl-polyacrylamide gel electrophoresis followed by densitometric analysis. No differences in submaximal iEMG were observed between EH and N trials during the first minute of work. At the end of both work trials iEMG was significantly elevated compared with starting values, however the iEMG recorded in EH exceeded N values by 15%. At the end of the EH trials the following were observed: a decrease in isometric force, MFCV and MF with an increase in EMD and the iEMGmax/force ratio. The iEMGmax was unchanged. No differences in any of these variables were observed after the N trial. Mean (SD) lactate concentrations following EH and N trials were 9.2 (4.4) mmol · 1−1 and 3.5 (1.1) mmol · 1−1, respectively. Results indicate that an increased motor unit recruitment and rate coding was needed in EH to maintain the required power output. The increased motor unit recruitment and rate coding were associated with myoelectric evidence of “peripheral” muscle fatigue. Subjects with higher compositions of type II MHC accumulated more lactate and displayed greater reductions in MF and MFCV during fatigue. Accepted: 16 June 1996  相似文献   

5.
The aim was to investigate whether output and electromyogram (EMG) variables obtained from an isokinetic endurance test of the shoulder flexor muscles of 23 women with neck and shoulder problems in a car and truck industry correlated with improvement or worsening of complaints 1 year later. Each subject performed 100 maximal isokinetic shoulder forward flexions at 60° · s−1. Surface EMG of the trapezius, deltoid, biceps brachii and infraspinatus muscles and mechanical output (peak torque) were determined for each contraction. The EMG was used to determine mean frequency f mean and the ratio between the signal amplitudes of the EMG of the passive relaxation and active flexion parts of each contraction cycle (SAR). The subjects also rated the degree of fatigue they experienced throughout the test. The magnitude of the shift in f mean was correlated with whether improvement or worsening occurred for complaints in the neck and or shoulders; a significant relationship (r 2 = 0.44; P = 0.001) existed between the total frequency shift of the four muscles and the variables measuring improvement in complaints. In the multivariate predictions other f mean variables and perception of fatigue were also of significance. The present study would indicate that a high degree of f mean shift correlates with improvement in neck and shoulder complaints 1 year later. One possible reason could be that f mean reflects the muscle morphology and/or a pathological situation for the type-1 muscle fibres. Accepted: 27 May 1998  相似文献   

6.
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were −2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration cause musculoskeletal disorders in some subjects but not in others. Accepted: 1 March 1997  相似文献   

7.
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise. Accepted: 5 November 1997  相似文献   

8.
Stretch reflexes were evoked in elbow flexor muscles undergoing three different muscle contractions, i.e. isotonic shortening (SHO) and lengthening (LEN), and isometric (ISO) contractions. The intermuscle relationships for the magnitude of the stretch reflex component in the eletromyographic (EMG) activities of two main elbow flexor muscles, i.e. the biceps brachii (BB) and the brachioradialis (BRD), were compared among the three types of contractions. The subjects were requested to move their forearms sinusoidally (0.1 Hz) against a constant pre-load between elbow joint angles of 10° (0° = full extension) and 80° during SHO and LEN, and to keep an angle of 45° during the ISO. The perturbations were applied at the elbow angle of 45° in pseudo-random order. The EMG signals were rectified and averaged over a period of 100 ms before and 400 ms after the onset of the perturbation 40–50 times. From the ensemble averaged EMG waveform, the background activity (BGA), short (20–50 ms) and long latency (M2, 50–80, M3, 80–100 ms) reflex and voluntary activity (100–150 ms) components were measured. The results showed that both BGA and reflex EMG activity of the two elbow flexor muscles were markedly decreased during the lengthening contraction compared to the SHO and ISO contractions. Furthermore, the changes of reflex EMG components in the BRD muscle were more pronounced than those in the BB muscle, i.e. the ratios of M2 and M3 magnitudes between BRD and BB (BRD:BB) were significantly reduced during the LEN contractions. These results would suggest that the gain of long latency stretch reflex EMG activities in synergistic muscles might be modulated independently according to the model of muscle contraction. Accepted: 1 September 1997  相似文献   

9.
The sound (SMG) generated by the biceps muscle during isometric exercise at 20, 40, 60, and 80% of maximum voluntary contraction (MVC) up to exhaustion has been recorded by a contact transducer and integrated (iSMG), together with the surface electromyogram (EMG) in eight young untrained men. At the onset of exercise, iSMG and integrated surface EMG (iEMG) amplitude increased linearly with exercise. iSMG remained constant for 253 +/- 73 (SD), 45 +/- 16, 21 +/- 5, and 0 s at the four levels of contraction. Then iSMG increased linearly at 20% MVC, fluctuated at 40% MVC, and decreased exponentially at 60 and 80% MVC. iSMG exhaustion-to-onset ratio was 5.0 at 20%, 1.0 at 40%, and 0.2 at 60 and 80% MVC. On the contrary, independently of exercise intensity, iEMG increased with time, being 1.4 higher at exhaustion than at the onset. The nonunivocal iSMG changes with time and effort of exercise suggest that the sound may be a useful tool to acquire different information to EMG and output force during muscle contraction up to fatigue.  相似文献   

10.
During running, the behaviour of the support leg was studied by modelling the runner using an oscillating system composed of a spring (the leg) and of a mass (the body mass). This model was applied to eight middle-distance runners running on a level treadmill at a velocity corresponding to 90% of their maximal aerobic velocity [mean 5.10 (SD 0.33) m · s−1]. Their energy cost of running (C r ), was determined from the measurement of O2 consumption. The work, the stiffness and the resonant frequency of both legs were computed from measurements performed with a kinematic arm. The C r was significantly related to the stiffness (P < 0.05, r = −0.80) and the absolute difference between the resonant frequency and the step frequency (P < 0.05, r = 0.79) computed for the leg producing the highest positive work. Neither of these significant relationships were obtained when analysing data from the other leg probably because of the work asymmetry observed between legs. It was concluded that the spring-mass model is a good approach further to understand mechanisms underlying the interindividual differences in C r . Accepted: 18 August 1997  相似文献   

11.
The effect of long-latency reflex modulation on the performance of a quick adjustment movement following a muscle stretch was studied in 26 healthy male subjects. When the subjects felt a sudden angle displacement in the direction of a wrist extension they were required to make an adjustment movement by moving a handlebar, held in the hand, to align with a target position as quickly and as accurately as possible. The index of performance (adjustment time) was the time taken to move the handle to the target position from stretch onset. A DC torque motor was used to evoke electromyographic (EMG) reflex responses on a wrist flexor. Averaging of the rectified EMG, recorded from surface electrodes placed over the flexor, showed short- and long-latency reflexes (M1 and M2 components). For all subjects, the amplitudes of the reflex components decreased during the adjustment movement because the target position for this study was fixed to the extension side of the wrist joint. The decrease in the M2 component, which is considered to be a transcortical reflex, was significantly larger than the decrease in the M1 component, which is spinal reflex. The main finding was of a positive correlation between the length of adjustment time and the degree of reduction of M1 and M2 with the adjustment movement (r = 0.602 for M1, P < 0.01; r = 0.850 for M2, P < 0.001). Moreover, there were correlations between the consistency of the voluntary response onset and the degree of M2 decrease (r = 0.577, P < 0.01), and between the consistency of the voluntary response onset and the length of the adjustment time (r = 0.603, P < 0.01). Therefore, we have concluded that the subjects who were able to perform adjustment movements within a short time could modulate the long-latency reflex of the muscle involved in such movements in order to make the function of their voluntary muscle activity more effective, and thus were able to respond appropriately. Accepted: 19 February 1997  相似文献   

12.
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.  相似文献   

13.
The aim of this investigation was to anatomically identify, and then determine the function of, individual segments within the human deltoid muscle. The anatomical structure of the deltoid was determined through dissection and/or observation of the shoulder girdles of 11 male cadavers (aged 65–84 years). These results indicate that the deltoid consists of seven anatomical segments (D1–D7) based upon the distinctive arrangement of each segment's origin and insertion. Radiographic analysis of a cadaveric shoulder joint suggested that only the postero-medial segment D7 has a line of action directed below the shoulder joint's axis of rotation. The functional role of each individual segment was then determined utilising an electromyographic (EMG) technique. Seven miniature (1 mm active plate; 7 mm interelectrode distance) bipolar surface electrodes were positioned over the proximal portion of each segment's muscle belly in 18 male and female subjects (18–30 years). EMG waveforms were then recorded during the production of rapid isometric shoulder abduction and adduction force impulses with the shoulder joint in 40 degrees of abduction in the plane of the scapula. Each subject randomly performed 15 abduction and 15 adduction isometric force impulses following a short familiarisation period. All subjects received visual feed back on the duration and amplitude of each isometric force impulse produced via a visual force-time display which compared subject performance to a criterion force-time curve. Movement time was 400 ms (time-to-peak isometric force) at an intensity level of 50% maximal voluntary contraction. Temporal and intensity analyses of the EMG waveforms, as well as temporal analysis of the isometric force impulses, revealed the neuromotor control strategies utilised by the CNS to control the activity of each muscle segment. The results showed that segmental neuromotor control strategies differ across the breadth of the muscle and that individual segments of the deltoid can be identified as having either “prime mover”, “synergist”, “stabiliser” or “antagonist” functions; functional classifications normally associated with whole muscle function. Therefore, it was concluded that the CNS can “fine tune” the activity of at least six discrete segments within the human deltoid muscle to efficiently meet the demands of the imposed motor task. Accepted: 15 December 1997  相似文献   

14.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

15.
Phonomyogram (PMG, or acoustic myogram) is known to increase with force in isometric contractions. We investigated this relationship for dynamic contractions against different inertias. PMG and surface electromyogram (EMG) from biceps brachii and brachioradialis muscles were simultaneously recorded with the angular acceleration of elbow flexions. These were self-initiated movements (30 degrees) toward a fixed target and performed against two different inertias. PMG and EMG were integrated from the onset of the signal to the end of the acceleration phase. Phono- and electromechanical delays were also measured. For integrated EMG (iEMG), there was a linear relationship between integrated PMG (iPMG) and force, the slope of which did not depend on inertia. There was also a linear relationship between iPMG or iEMG and angular acceleration, with a higher slope for the highest inertia condition. There was also a family of linear relationships between iPMG or iEMG and angular acceleration, and their slopes depended on inertia. Measurements of the phono- and electromechanical delays showed that onset of PMG followed that of EMG but preceded onset of acceleration. It is suggested that PMG expresses tension of the underlying muscle contractile elements. Given the simplicity of the PMG method, we conclude that PMG allows convenient evaluation of muscle tension during human dynamic contraction.  相似文献   

16.
The purpose of this study was to estimate the relative contributions of central and peripheral factors to the development of human muscle fatigue. Nine healthy subjects [five male, four female; age = 30 (2) years, mean (SE)] sustained a maximum voluntary isometric contraction (MVC) of the ankle dorsiflexor muscles for 4 min. Fatigue was quantitated as the fall in MVC. Three measures of central activation and one measure of peripheral activation (compound muscle action potential, CMAP) were made using electromyography (EMG) and electrical stimulation. Measures of intramuscular metabolism were made using magnetic resonance spectroscopy. After exercise, MVC and electrically stimulated tetanic contraction (50 Hz, 500 ms) forces were 22.2 (3.7)% and 37.3 (7.1)% of pre-exercise values, respectively. The measures of central activation suggested some central fatigue during exercise: (1) the central activation ratio [MVC/(MVC + superimposed tetanic force)] fell from 0.94 (0.03) to 0.78 (0.09), (2) the MVC/tetanic force ratio fell from 2.3 (0.7) to 1.3 (0.7), and (3) the integral of the EMG (iEMG) signal decreased to 72.6 (9.1)% of the initial value, while the CMAP amplitude was unchanged. Intramuscular pH was associated by regression with the decline in MVC force (and therefore fatigue) and iEMG. The results indicate that central factors, which were not associated with altered peripheral excitability, contributed approximately 20% to the muscle fatigue developed, with the remainder being attributable to intramuscular (i.e., metabolic) factors. The association between pH and iEMG is consistent with proton concentration as a feedback mechanism for central motor drive during maximal effort.  相似文献   

17.
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject maintained relative forces of either 25% and 70% maximal voluntary contraction (MVC), 50% and 100% MVC, or 40% and 60% MVC. Muscle oxygenation was assessed using a near infrared spectroscope, and expressed as a percentage of the reference value (ΔO2rest) which was the difference between the minimal oxygenation obtained after 6 min of ischaemia at rest and the maximal reoxygenation following the release of the tourniquet. During IIC at 25% MVC, muscle oxygenation decreased to 17 (SEM 3)% ΔO2rest, then it levelled off [25 (SEM 1)% ΔO2rest]. After the point at which target force could not be maintained, reoxygenation was very weak. During IIC at 40%, 50%, 60%, and 70% MVC, the lowest muscle oxygenation values were obtained after 15–20 s of contraction and corresponded to −18 (SEM 6), −59 (SEM 12) −31 (SEM 6), and −29 (SEM 6)% ΔO2rest, respectively. For the contraction at 100% MVC, the lowest oxygenation [−19 (SEM 9)% ΔO2rest] was obtained while force was decreasing (69% MVC). During the anisotonic part of the isometric contractions, the greatest reoxygenation rate was obtained after 50% MVC IIC (P < 0.001). Our results showed that during isometric elbow flexions between 25% and 100% MVC, there was no linear relationship between external force and muscle oxygenation, and that the maximal deoxygenation of the brachioradialis muscle was obtained at 50% MVC. Accepted: 16 February 1998  相似文献   

18.
Microcirculation in the upper portion of the trapezius muscle was measured percutaneously by continuous laser-Doppler flowmetry (LDF) during two 10-min series of alternating 1-min periods of static contraction and rest determined electromyographically (EMG). Stepwise increased contraction was induced by keeping the arms straight and elevated at 30, 60, 90 and 135°, which was repeated with a 1-kg load carried in each hand. Thereafter, fatigue and recovery were recorded while the subject kept her arms straight and elevated at 45° carrying the 1-kg hand load as long as possible, followed by rest with arms hanging and no load. A group of 16 healthy women of different ages was studied. Signal processing was done on line using a 386 SX computer. The LDF- and root-mean-square (rms) EMG signals were normalized. Spectrum analyses of EMG mean power frequency (MPF) and median spectrum frequency were performed. The rms-EMG increased significantly with an increase in the calculated shoulder torque (r=0.75). Accumulated local fatigue was indicated by a decrease in MPF with increased shoulder angle and added load (r = –0.54). Blood flow increased with increased shoulder angle (r=0.82, with hand loadr=0.62) and with increased shoulder torque (r=0.72), and also showed a significant increase with increased EMG activity (r=0.74). The LDF showed a negative correlation to MPF (r= –0.67), with increased values when MPF was lowered. During the endurance test, a moderate increase of LDF occurred which reached its maximum during the 1st min of recovery. Then, a slow return to the base level was recorded. The ability to increase the flow in the microcirculation with increasing muscle load was not diminished with age.  相似文献   

19.
The aim of the present study was to examine the physiological and mechanical factors which may be concerned in the increase in energy cost during running in a fatigued state. A group of 15 trained triathletes ran on a treadmill at velocities corresponding to their personal records over 3000m [mean 4.53 (SD 0.28) m · s−1] until they felt exhausted. The energy cost of running (C R) was quantified from the net O2 uptake and the elevation of blood lactate concentration. Gas exchange was measured over 1 min firstly during the 3rd–4th min and secondly during the last minute of the run. Blood samples were collected before and after the completion of the run. Mechanical changes of the centre of mass were quantified using a kinematic arm. A significant mean increase [6.9 (SD 3.5)%, P < 0.001] in C R from a mean of 4.4 (SD 0.4) J · kg−1 · m−1 to a mean of 4.7 (SD 0.4) J · kg−1 · m−1 was observed. The increase in the O2 demand of the respiratory muscles estimated from the increase in ventilation accounted for a considerable proportion [mean 25.2 (SD 10.4)%] of the increase in CR. A mean increase [17.0 (SD 26.0)%, P < 0.05] in the mechanical cost (C M) from a mean of 2.36 (SD 0.23) J · kg−1 · m−1 to a mean of 2.74 (SD 0.55) J · kg−1 · m−1 was also noted. A significant correlation was found between C R and C M in the non-fatigued state (r = 0.68, P < 0.01), but not in the fatigued state (r = 0.25, NS). Furthermore, no correlations were found between the changes (from non-fatigued to fatigued state) in C R and the changes in C M suggesting that the increase in C R is not solely dependent on the external work done per unit of distance. Since step frequency decreased slightly in the fatigued state, the internal work would have tended to decrease slightly which would not be compatible with an increase in C R. A stepwise regressions showed that the changes in C R were linked (r = 0.77, P < 0.01) to the changes in the variability of step frequency and in the variability of potential cost suggesting that a large proportion of the increase in C R was due to an increase in the step variability. The underlying mechanisms of the relationship between C R and step variability remains unclear. Accepted: 15 September 1997  相似文献   

20.
The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号