首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

2.
The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.  相似文献   

3.
Thirty untrained subjects (group 1: 10 female, 20-30 years; group 2: 10 female, 36-46 years; group 3: 10 males, 20-30 years) performed dynamic hand work on a hand-grip dynamometer at loads varying from 20 to 100% MVC and three different working frequencies (20, 40, and 60 cpm). The mechanical muscle activity, the iEMG and the R-R interval were measured throughout the exercise. Before and after each exercise, the maximal hand-grip force (MVC) was determined together with the iEMG and the R-R interval. With the loads increasing gradually, the mean values of the duration of the contraction phase and of the iEMG of the four muscles increased in all test groups, but the duration of the rest phase and R-R interval decreased. Through an Analysis of Variance, evidence of systematic differences between the test groups was significant for the R-R interval only, while the effects of the loads (with exception of the rest phase) and of the working frequency proved significant for all parameters. The MVC, the iEMG and the R-R interval measured before and after the exercise did not show significant differences. This indicates that the exercise was not fatiguing.  相似文献   

4.
The changes in the soundmyogram (SMG) and electromyogram (EMG) frequency content during exhausting contractions at 20%, 40%, 60% and 80% of the maximal voluntary contraction (MVC) were investigated by the spectral analysis of the SMG and EMG detected from the biceps brachii muscles of 13 healthy men. The root mean squares (rms) of the two signals were also calculated. Throughout contraction the EMG rms always increased while this was true only at 20% MVC for the SMG. A marked decrease was detected at 60% and 80% MVC. With fatigue the EMG spectra presented a compression towards the lower frequencies at all exercise intensities. The SMG showed a more complex behaviour with a transient increase in its frequency content, followed by a continuous compression of the spectra, at 60% and 80% MVC, and a nearly stable frequency content at lower contraction intensities. This study suggested that different aspects of the changes in the motor unit's activation strategy at different levels of exhausting contractions can be monitored by SMG and EMG signals.  相似文献   

5.
Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P less than 0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1-2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

6.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

7.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

8.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Previous studies in isolated muscle preparations have shown that muscle blood flow becomes compromised at higher contraction frequencies. The purpose of this study was to examine the effect of increases in contraction frequency and muscle tension on mean blood flow (MBF) during voluntary exercise in humans. Nine male subjects [23.6 +/- 3.7 (SD) yr] performed incremental knee extension exercise to exhaustion in the supine position at three contraction frequencies [40, 60, and 80 contractions/min (cpm)]. Mean blood velocity of the femoral artery was determined beat by beat using Doppler ultrasound. MBF was calculated by using the diameter of the femoral artery determined at rest using echo Doppler ultrasound. The work rate (WR) achieved at exhaustion was decreased (P < 0.05) as contraction frequency increased (40 cpm, 16.2 +/- 1.4 W; 60 cpm, 14.8 +/- 1.4 W; 80 cpm, 13.2 +/- 1.3 W). MBF was similar across the contraction frequencies at rest and during the first WR stage but was higher (P < 0.05) at 40 than 80 cpm at exercise intensities >5 W. MBF was similar among contraction frequencies at exhaustion. In humans performing knee extension exercise in the supine position, muscle contraction frequency and/or muscle tension development may appreciably affect both the MBF and the amplitude of the contraction-to-contraction oscillations in muscle blood flow.  相似文献   

10.
The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/dt(max)). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/dt(max), and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/dt(max) may be influenced by the attenuated Ia afferent functions of a single synergist muscle.  相似文献   

11.
Fourteen young subjects (7 men and 7 women) performed a fatiguing isometric contraction with the elbow flexor muscles at 20% of maximal voluntary contraction (MVC) force on three occasions. Endurance time for session 3 [1,718 +/- 1,189 (SD) s] was longer than for session 1 (1,225 +/- 683 s) and session 2 (1,410 +/- 977 s). Five men and four women increased endurance time between session 1 and 3 by 60 +/- 28% (responders), whereas two men and three women did not (-3 +/- 11%; nonresponders). The MVC force was similar for the responders and nonresponders, both before and after the fatiguing contraction. Fatiguing contractions were characterized by an increase in the electromyogram (EMG) amplitude and number of bursts during the fatiguing contractions. The responders achieved a similar level of EMG at exhaustion but a reduced rate of increase in the EMG across sessions. The rate of increase in EMG across sessions declined for the nonresponders, but it remained greater than that of the responders. The increase in burst rate during the contractions declined across sessions with a negative relation between burst rate and endurance time (r = -0.42). Normalized force fluctuations increased during the fatiguing contractions, and there was a positive relation (r = 0.60) between the force fluctuations and burst rate. Changes in mean arterial pressure and heart rate during the fatiguing contraction were similar for the responders and nonresponders across the three sessions. The results indicate that those subjects who increased the endurance time of a submaximal contraction across three sessions did so by altering the level and pattern of muscle activation.  相似文献   

12.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

13.
The purpose of this study was to estimate the relative contributions of central and peripheral factors to the development of human muscle fatigue. Nine healthy subjects [five male, four female; age = 30 (2) years, mean (SE)] sustained a maximum voluntary isometric contraction (MVC) of the ankle dorsiflexor muscles for 4 min. Fatigue was quantitated as the fall in MVC. Three measures of central activation and one measure of peripheral activation (compound muscle action potential, CMAP) were made using electromyography (EMG) and electrical stimulation. Measures of intramuscular metabolism were made using magnetic resonance spectroscopy. After exercise, MVC and electrically stimulated tetanic contraction (50 Hz, 500 ms) forces were 22.2 (3.7)% and 37.3 (7.1)% of pre-exercise values, respectively. The measures of central activation suggested some central fatigue during exercise: (1) the central activation ratio [MVC/(MVC + superimposed tetanic force)] fell from 0.94 (0.03) to 0.78 (0.09), (2) the MVC/tetanic force ratio fell from 2.3 (0.7) to 1.3 (0.7), and (3) the integral of the EMG (iEMG) signal decreased to 72.6 (9.1)% of the initial value, while the CMAP amplitude was unchanged. Intramuscular pH was associated by regression with the decline in MVC force (and therefore fatigue) and iEMG. The results indicate that central factors, which were not associated with altered peripheral excitability, contributed approximately 20% to the muscle fatigue developed, with the remainder being attributable to intramuscular (i.e., metabolic) factors. The association between pH and iEMG is consistent with proton concentration as a feedback mechanism for central motor drive during maximal effort.  相似文献   

14.
This study investigated the effect of prolonged load carriage on lower limb muscle activity displayed by female recreational hikers. Electromyography (EMG) signals from vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST), tibialis anterior (TA) and gastrocnemius (GM) were recorded for fifteen female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Muscle burst duration, muscle burst onset relative to initial contact and integrated EMG signals (iEMG) were calculated to evaluate muscle activity, whereas the shift in mean power frequency (MPF) was used to evaluate muscle fatigue. Increased walking distance significantly decreased the MPF of TA; decreased the iEMG for VL, ST and GM; and shortened VL muscle burst duration. Furthermore, carrying 20–40% BW loads significantly increased VL and GM iEMG and increased BF muscle burst duration, whereas a 40% BW load caused a later VL muscle burst onset. The differences observed in muscle activity with increased load mass seem to be adjustments aimed at maintaining balance and attenuating the increased loads placed on the lower limbs during gait. Based on the changes in muscle activity, a backpack load limit of 30% BW may reduce the risk of lower limb injury for female hikers during prolonged walking.  相似文献   

15.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

16.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

17.
The purpose of this study was to evaluate muscle fatigue using electromyogram (EMG) and acoustic myogram (AMG) signals of the shoulder and arm muscles during sustained holding tasks, with the elbow at different angles and at different levels of maximum voluntary contraction (MVC). The EMG and AMG of four muscles, including the upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR), were recorded during experiments using 10 healthy young males. The experiments were conducted under 9 pairs of conditions: 3 elbow angles (120 degrees, 90 degrees, and 60 degrees) and *3 levels of %MVC (20%, 40%, and 60%). Subjects were instructed to hold a weight equal to the designated %MVC at designated joint angles and asked to maintain that condition for as long as possible until exhaustion. Joint angles were also recorded by the electrogoniometers. The analysis of variance revealed that there was no significant effect of elbow angle on the mean MVC or on the endurance time. Elbow angle showed a significant effect on mean power frequency (MPF) of EMG in DL, BB, and BR, and a significant effect on root mean square (RMS) of EMG in four muscles. In BB and BR, MPF of EMG at 120 degrees was found to be significantly lower than 90 degrees and 60 degrees, respectively. There was a significant main effect of elbow angle on MPF of AMG for TP at 20% MVC; for DL at 20% and 40% MVC; for BB at 40% and 60% MVC; and for BR at the three levels of %MVC. The results showed that the range MPF of AMG for DL, BB, and BR was between 32 to 46 Hz, whereas that for TP was from 49 to 83 Hz. There was a significant effect of elbow angle on RMS of AMG in all four muscles in all experiments. At 20% MVC, a progressive increase in RMS of AMG was observed with time. In contrast, at 40% and 60% MVC, RMS showed very different behavior; specifically, it was found that RMS of AMG at 20% MVC significantly increased with increase of elbow angle. We conclude that RMS of AMG has a good and clear correlation with elbow angle at a low level of contraction.  相似文献   

18.
The aim of the study was to investigate the recovery of the maximum voluntary contraction force (MVC), the endurance time and electromyographical (EMG) parameters following exhaustive dynamic exercise of the m. biceps brachii. EMG recordings were made in ten healthy subjects using bipolar surface electrodes placed over the common belly of the left arm biceps muscle. Up to 25 h post-exercise, the maximum contraction force and the EMG signal were recorded alternately at regular intervals. The EMG signal was recorded during 30-s contractions at 40% of the pre-fatigued MVC. Four hours and 25 h post-exercise, the endurance time of a 40% pre-fatigued MVC was recorded. Up to 25 h after the exercise the maximum contraction force, the endurance time and the EMG parameters were significantly different from the pre-exercise values. Nine out of ten subjects complained that muscle soreness had developed. Thus, long-lasting changes are found after exhaustive dynamic exercise, not only in the MVC and the muscle's endurance capacity, but also in the EMG signal.  相似文献   

19.
To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min (experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC (experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels < or =5.0% of MVC.  相似文献   

20.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号