首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Keeney DB  Heist EJ 《Molecular ecology》2006,15(12):3669-3679
Although many coastal shark species have widespread distributions, the genetic relatedness of worldwide populations has been examined for few species. The blacktip shark, (Carcharhinus limbatus), inhabits tropical and subtropical coastal waters throughout the world. In this study, we examined the genetic relationships of blacktip shark populations (n = 364 sharks) throughout the majority of the species' range using the entire mitochondrial control region (1067-1070 nucleotides). Two geographically distinct maternal lineages (western Atlantic, Gulf of Mexico, and Caribbean Sea clades, and eastern Atlantic, Indian, and Pacific Ocean clades) were identified and shallow population structure was detected throughout their geographic ranges. These findings indicate that a major population subdivision exists across the Atlantic Ocean, but not the Pacific Ocean. The historical dispersal of this widespread, coastal species may have been interrupted by the rise of the Isthmus of Panama. This scenario implies historical dispersal across the Pacific Ocean (supported by the recovery of the same common haplotype from the Philippines, Hawaii, and the Gulf of California reflecting recent/contemporary dispersal abilities) and an oceanic barrier to recent migration across the Atlantic. Genetic structure within the eastern Atlantic/Indo-Pacific (Phi(ST) = 0.612, P < 0.001) supports maternal philopatry throughout this area, expanding previous western Atlantic findings. Eastern Atlantic/Indo-Pacific C. limbatus control region haplotypes were paraphyletic to Carcharhinus tilstoni haplotypes in our maximum-parsimony analysis. The greater divergence of western Atlantic C. limbatus than C. tilstoni from eastern Atlantic/Indo-Pacific C. limbatus reflects the taxonomic uncertainty of western Atlantic C. limbatus.  相似文献   

2.
Approximately three million years ago the Isthmus of Panama formed an impenetrable land barrier between the tropical eastern Pacific Ocean and the tropical western Atlantic Ocean. Since this time, isolated geminate species have evolved from once contiguous populations, either side of the barrier. One such organism whose distribution is divided by the Isthmus is the tropical brittlestar Ophiactis savignyi, once suggested to be the most common brittlestar in the world. Rather than showing a genetic pattern consistent with a history of isolation, we show that this species has recently dispersed between the Pacific Ocean and the western Atlantic Ocean. This conclusion is based upon a phylogenetic analysis using sequences of the COI mitochondrial DNA gene from these populations. Identical haplotypes between oceans, and a genetic signature of population expansion, provide compelling evidence that the western Atlantic contains at least one cluster of haplotypes recently derived from the Indo-Pacific. Inadvertent human-aided translocation of individuals, presumably in ballast water or fouling communities, is strongly implicated as a mechanism for dispersal between oceans. We believe that cryptic marine invasions are likely to be common and our awareness of them will rapidly increase as systematic and phylogeographic knowledge of marine taxa grow.  相似文献   

3.
Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.  相似文献   

4.
Extant bats of the genus Emballonura have a trans-Indian Ocean distribution, with two endemic species restricted to Madagascar, and eight species occurring in mainland southeast Asia and islands in the western Pacific Ocean. Ancestral Emballonura may have been more widespread on continental areas, but no fossil identified to this genus is known from the Old World. Emballonura belongs to the subfamily Emballonurinae, which occurs in the New and Old World. Relationships of all Old World genera of this subfamily, including Emballonura and members of the genera Coleura from Africa and western Indian Ocean islands and Mosia nigrescens from the western Pacific region, are previously unresolved. Using 1833 bp of nuclear and mitochondrial genes, we reconstructed the phylogenetic history of Old World emballonurine bats. We estimated that these lineages diverged around 30 million years ago into two monophyletic sister groups, one represented by the two taxa of Malagasy Emballonura, Coleura and possibly Mosia, and the other by a radiation of Indo-Pacific Emballonura, hence, rendering the genus Emballonura paraphyletic. The fossil record combined with these phylogenetic relationships suggest at least one long-distance dispersal event across the Indian Ocean, presumably of African origin, giving rise to all Indo-Pacific Emballonura species (and possibly Mosia). Cladogenesis of the extant Malagasy taxa took place during the Quaternary giving rise to two vicariant species, E. atrata in the humid east and E. tiavato in the dry west.  相似文献   

5.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

6.
The rhodophyte seaweed Asparagopsis armata Harvey is distributed in the northern and southern temperate zones, and its congener Asparagopsis taxiformis (Delile) Trevisan abounds throughout the tropics and subtropics. Here, we determine intraspecific phylogeographic patterns to compare potential causes of the disjunctions in the distributions of both species. We obtained specimens throughout their ranges and inferred phylogenies from the hypervariable domains D1-D3 of the nuclear rDNA LSU, the plastid spacer between the large and small subunits of RuBisCo and the mitochondrial cox 2-3 intergenic spacer. The cox spacer acquired base changes the fastest and the RuBisCo spacer the slowest. Median-joining networks inferred from the sequences revealed the absence of phylogeographic structure in the introduced range of A. armata, corroborating the species' reported recent introduction. A. taxiformis consisted of three nuclear, three plastid and four mitochondrial genetically distinct, lineages (1-4). Mitochondrial lineage 3 is found in the western Atlantic, the Canary Islands and the eastern Mediterranean. Mitochondrial lineages 1, 2, and 4 occur in the Indo-Pacific, but one of them (lineage 2) is also found in the central Mediterranean and southern Portugal. Phylogeographic results suggest separation of Atlantic and Indo-Pacific lineages resulted from the emergence of the Isthmus of Panama, as well as from dispersal events postdating the closure event, such as the invasion of the Mediterranean Sea by mitochondrial lineages 2 and 3. Molecular clock estimates using the Panama closure event as a calibration for the split of lineages 3 and 4 suggest that A. taxiformis diverged into two main cryptic species (1 + 2 and 3 + 4) about 3.2-5.5 million years ago (Ma), and that the separation of the mitochondrial lineages 1 and 2 occurred 1-2.3 Ma.  相似文献   

7.
To understand how allopatric speciation proceeds, we need information on barriers to gene flow, their antiquity, and their efficacy. For marine organisms with planktonic larvae, much of this information can only be obtained through the determination of divergence between populations. We evaluated the importance of ocean barriers by studying the mitochondrial DNA phylogeography of Tripneustes, a pantropical genus of shallow water sea urchin. A region of cytochrome oxidase I (COI) was sequenced in 187 individuals from locations around the globe. The COI phylogeny agreed with a previously published phylogeny of bindin that barriers important to the evolution of Tripneustes are: (1) the cold water upwelling close to the tip of South Africa, (2) the Isthmus of Panama, (3) the long stretch of deep water separating the eastern from the western Atlantic, and (4) the freshwater plume of the Orinoco and the Amazon rivers between the Caribbean and the coast of Brazil. These barriers have previously been shown to be important in at least a subset of the shallow water marine organisms in which phylogeography has been studied. In contrast, the Eastern Pacific Barrier, 5000 km of deep water between the central and the eastern Pacific that has caused the deepest splits in other genera of sea urchins, is remarkably unimportant as a cause of genetic subdivision in Tripneustes. There is also no discernible subdivision between the Pacific and Indian Ocean populations of this genus. The most common COI haplotype is found in the eastern, central, and western Pacific as well as the Indian Ocean. Morphology, COI, and bindin data agree that T. depressus from the eastern Pacific and T. gratilla from the western Pacific are, in fact, the same species. The distribution of haplotype differences in the Indo-Pacific exhibits characteristics expected from a sea urchin genus with ephemeral local populations, but with high fecundity, dispersal, and growth: there is little phylogenetic structure, and mismatch distributions conform to models of recent population expansion on a nearly global scale. Yet, comparisons between local populations produce large and significant F(ST) values, indicating nonrandom haplotype distribution. This apparent local differentiation is only weakly reflected in regional divergence, and there is no evidence of isolation by distance in correlations between F(ST) values and either geographical or current distance. Thus, Tripneustes in the Indo-Pacific (but not in the Atlantic) seems to be one large metapopulation spanning two oceans and containing chaotic, nonequilibrium local variation, produced by the haphazard arrival of larvae or by unpredictable local extinction.  相似文献   

8.
Sequence data derived from four markers (the nuclear RP1 and Aldolase and the mitochondrial 16S rRNA and cytochrome b genes) were used to determine the phylogenetic relationships among 32 species belonging to the genus Hippocampus. There were marked differences in the rate of evolution among these gene fragments, with Aldolase evolving the slowest and the mtDNA cytochrome b gene the fastest. The RP1 gene recovered the highest number of nodes supported by >70% bootstrap values from parsimony analysis and >95% posterior probabilities from Bayesian inference. The combined analysis based on 2317 nucleotides resulted in the most robust phylogeny. A distinct phylogenetic split was identified between the pygmy seahorse, Hippocampus bargibanti, and a clade including all other species. Three species from the western Pacific Ocean included in our study, namely H. bargibanti, H. breviceps, and H. abdominalis occupy basal positions in the phylogeny. This and the high species richness in the region suggests that the genus evolved somewhere in the West Pacific. There is also fairly strong molecular support for the remaining species being subdivided into three main evolutionary lineages: two West Pacific clades and a clade of species present in both the Indo-Pacific and the Atlantic Ocean. The phylogeny obtained herein suggests at least two independent colonization events of the Atlantic Ocean, once before the closure of the Tethyan seaway, and once afterwards.  相似文献   

9.
Pygmy angelfishes (genus Centropyge) are widespread and species-rich in the Indo-Pacific, but only three species are recognized in the Atlantic: Centropyge resplendens on the Mid-Atlantic Ridge, Centropyge argi in the Caribbean, and Centropyge aurantonotus in Brazil and the southern Caribbean. Atlantic species are distinguished only by color patterns and are very similar to Centropyge acanthops (Cac) in the western Indian Ocean, raising the possibility that pygmy angelfish recently invaded the Atlantic Ocean via southern Africa. To test this zoogeographic hypothesis, we compared a 454-bp segment of the mitochondrial DNA (mtDNA) control region among pygmy angelfishes of the subgenus Xiphypops, which includes the three Atlantic species, the Indian Ocean species, and an Indo-Pacific species [Centropyge fisheri (Cfi)]. The Indian Ocean species Cac is closest to the Atlantic species (d = 0.059) relative to Cfi (d = 0.077). The mtDNA genealogy indicates a colonization pathway from the Indian Ocean directly to the West Atlantic, followed by at least two waves of dispersal to the Mid-Atlantic Ridge. The gene tree for the three Atlantic species is polyphyletic, raising questions about taxonomic assignments based on color pattern. Mismatch distributions place Atlantic founder events and population expansions at about 250,000-500,000 years ago. Estimates of effective female population sizes from mismatch and coalescence analyses are consistent with founder events by tens of individuals in the western Atlantic, followed by expansions to several million individuals.  相似文献   

10.
The first records of the tapeworm genus Pedibothrium from nurse sharks (Ginglymostoma cirratum) in the eastern Pacific and eastern Atlantic Oceans provide new insights on the age of the association between these tapeworms and this host. Four individuals of G. cirratum examined from the southern tip of the Baja Peninsula, Mexico, were found to host P. manteri and P. brevispine. Tapeworm specimens discovered in the collection of J. Cadenet, taken from G. cirratum off Goree near Dakar, Senegal in 1947, were of P. globicephalum and P. manteri. These tapeworm faunas are consistent with those found previously in small and large nurse sharks, respectively, in the western Atlantic Ocean. The distributional data, combined with the non-vagile habits of the nurse shark, indicate this host-parasite association dates from the most recent completion of the Panamanian Isthmus, approximately 2 Mya. This suggests that P. manteri and R brevispine have remained unchanged for at least 2 Myr. The data from the eastern Atlantic Ocean are less informative. The amphi-Atlantic distribution of P. manteri and P. globicephalum in G. cirratum may have resulted from vicariant events associated with the formation of the Atlantic Ocean. However, fossils of at least two extinct species of Ginglymostoma are also known from both sides of the Atlantic Ocean. Short of parallel evolution of three different species of Ginglymostoma on either side of the Atlantic Ocean, these data séem more consistent with dispersal as an explanation for this disjunction and are thus of limited utility for extending the age of this host-parasite association at this time. Analysis of the degree of genetic divergence among individuals of G. cirratum and among individuals of the broadly distributed species of Pedibothrium from all three localities would be extremely interesting.  相似文献   

11.
The bottlenose dolphin, genus Tursiops, is cosmopolitan occurring in tropical and temperate regions, with morphological variation between and within different oceans. Since the genus' taxonomy has been under discussion for a long time, this work aimed at analyzing the cranial variability of T. truncatus from different regions of the world. Geometric Morphometrics analyses were performed in 201 skulls of adult specimens, on dorsal, ventral, and lateral views, from the Eastern North Pacific, Eastern North Atlantic, Eastern South Atlantic, and Western South Atlantic oceans. The results indicate differences between individuals that inhabit the Atlantic and Pacific oceans. Within the Atlantic Ocean, there is an evident longitudinal differentiation of specimens from the eastern and western regions. A latitudinal separation was also observed, considering specimens from the North and South Atlantic Ocean. In the Western South Atlantic statistical differences were found between two morphological groups, identified as T. gephyreus (sensu Lahille, 1908) and T. truncatus, and the cross-validation presented 98% as minimum confidence for correct classification of these two groups. The present study provides strong morphological support to consider these two lineages as separate species.  相似文献   

12.
Phylogeography and phyloecology of dorid nudibranchs (Mollusca, Gastropoda)   总被引:2,自引:0,他引:2  
Dorid nudibranchs exhibit a number of anatomical and physiological adaptations that reflect a complex evolutionary history. The lack of a fossil record means that all available information on the evolution of this group comes from phylogenetic evidence. Deep imbalances in the phylogeny of dorid nudibranchs indicates that this group has probably undergone random extinction events and subsequent speciation of derived lineages. Sister-group relationships between eastern Pacific, Atlantic and tropical Indo-Pacific taxa [(eastern Pacific, Atlantic) Indo-Pacific], repeated throughout several lineages of dorid nudibranchs, provide solid evidence of two consecutive vicariant events: (1) the closure of communication between the tropical Indo-Pacific region and the Atlantic and eastern Pacific, which began during the Oligocene–Miocene transition and was completed with the formation of the East Pacific Barrier, and (2) the rise of the Panama isthmus. The absence of solid dates for the effective isolation of the eastern Pacific and the central Pacific does not allow estimations of the time of diversification of dorid nudibranchs. Phylogenetic evidence indicates that omnivorism and de novo synthesis of chemical defences are probably the plesiomorphic conditions in dorid nudibranchs. It is also likely that all sponge-feeding cryptobranch dorids have a common ancestor, but other cases of sponge feeding in phanerobranch dorids have arisen independently. The numerous instances in which de novo synthesis was replaced by sequestration of chemicals from the prey are evidence of a great metabolic versatility in dorid nudibranchs.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 551–559.  相似文献   

13.

Background  

The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns.  相似文献   

14.
Evidence for initial opening of the Pacific ocean in the Jurassic   总被引:1,自引:0,他引:1  
An argument is presented for the east-west initial opening of the pacific Ocean during Early Jurassic times, on paleontological, biogeograhical, and geological grounds. A new reconstruction of the continents bordering the Pacific Ocean is proposed, based chiefly upon trans-Pacific, terrestrial biotic links that are not reflected in regions bordering the Atlantic. A new Arctic Ocean reconstruction is also proposed. Since the Atlantic and Indian Oceans were closed in the Early Jurassic as well, an expanding-earth model is adopted, instead of a Pangaen reconstruction on a present-sized earth. The model prposed here is also compatible with geological evidence for a narrow, epicontinental Tethys Sea. Sea-floor subduction along the perimeter of the Pacific appears to be actively taking place and in the past was much more extensive along the eastern border than on the western side. The tectonics of Antarctica, the Southwest Pacific, Indonesia, Japan, the Arctic region, western North America, Baja California, the Carribean, and the Gulf of Mexico are discussed in terms of the proposed model. The Pacific sea-floor spreading history is outlined and related to the initial opening of the North Atlantic 180 million years ago (Early Jurassic). The South Pacific and Indian Ocean are both considered to have opened some 155 million years ago (Late Jurassic). The original and present positions of the Jurassic equator are determined.  相似文献   

15.
The pantropical sea urchin genus Eucidaris contains four currently recognized species, all of them allopatric: E. metularia in the Indo-West Pacific, E. thouarsi in the eastern Pacific, E. tribuloides in both the western and eastern Atlantic, and E. clavata at the central Atlantic islands of Ascension and St. Helena. We sequenced a 640-bp region of the cytochrome oxidase I (COI) gene of mitochondrial DNA to determine whether this division of the genus into species was confirmed by molecular markers, to ascertain their phylogenetic relations, and to reconstruct the history of possible dispersal and vicariance events that led to present-day patterns of species distribution. We found that E. metularia split first from the rest of the extant species of the genus. If COI divergence is calibrated by the emergence of the Isthmus of Panama, the estimated date of the separation of the Indo-West Pacific species is 4.7–6.4 million years ago. This date suggests that the last available route of genetic contact between the Indo-Pacific and the rest of the tropics was from west to east through the Eastern Pacific Barrier, rather than through the Tethyan Sea or around the southern tip of Africa. The second cladogenic event was the separation of eastern Pacific and Atlantic populations by the Isthmus of Panama. Eucidaris at the outer eastern Pacific islands (Galapagos, Isla del Coco, Clipperton Atoll) belong to a separate clade, so distinct from mainland E. thouarsi as to suggest that this is a different species, for which the name E. galapagensis is revived from the older taxonomic literature. Complete lack of shared alleles in three allozyme loci between island and mainland populations support their separate specific status. Eucidaris galapagensis and E. thouarsi are estimated from their COI divergence to have split at about the same time that E. thouarsi and E. tribuloides were being separated by the Isthmus of Panama. Even though currents could easily convey larvae between the eastern Pacific islands and the American mainland, the two species do not appear to have invaded each other's ranges. Conversely, the central Atlantic E. clavata at St. Helena and Ascension is genetically similar to E. tribuloides from the American and African coasts. Populations on these islands are either genetically connected to the coasts of the Atlantic or have been colonized by extant mitochondrial DNA lineages of Eucidaris within the last 200,000 years. Although it is hard to explain how larvae can cross the entire width of the Atlantic within their competent lifetimes, COI sequences of Eucidaris from the west coast of Africa are very similar to those of E. tribuloides from the Caribbean. FST statistics indicate that gene flow between E. metularia from the Indian Ocean and from the western and central Pacific is restricted. Low gene flow is also evident between populations of E. clavata from Ascension and St. Helena. Rates of intraspecific exchange of genes in E. thouarsi, E. galapagensis, and E. tribuloides, on the other hand, are high. The phylogeny of Eucidaris confirms Ernst Mayr's conclusions that major barriers to the dispersal of tropical echinoids have been the wide stretch of deep water between central and eastern Pacific, the cold water off the southwest coast of Africa, and the Isthmus of Panama. It also suggests that a colonization event in the eastern Pacific has led to speciation between mainland and island populations.  相似文献   

16.
Genomic phylogeography plays an important role in describing evolutionary processes and their geographic, ecological, or cultural drivers. These drivers are often poorly understood in marine environments, which have fewer obvious barriers to mixing than terrestrial environments. Taxonomic uncertainty of some taxa (e.g., cetaceans), due to the difficulty in obtaining morphological data, can hamper our understanding of these processes. One such taxon, the short‐finned pilot whale, is recognized as a single global species but includes at least two distinct morphological forms described from stranding and drive hunting in Japan, the “Naisa” and “Shiho” forms. Using samples (n = 735) collected throughout their global range, we examine phylogeographic patterns of divergence by comparing mitogenomes and nuclear SNP loci. Our results suggest three types within the species: an Atlantic Ocean type, a western/central Pacific and Indian Ocean (Naisa) type, and an eastern Pacific Ocean and northern Japan (Shiho) type. mtDNA control region differentiation indicates these three types form two subspecies, separated by the East Pacific Barrier: Shiho short‐finned pilot whale, in the eastern Pacific Ocean and northern Japan, and Naisa short‐finned pilot whale, throughout the remainder of the species' distribution. Our data further indicate two diverging populations within the Naisa subspecies, in the Atlantic Ocean and western/central Pacific and Indian Oceans, separated by the Benguela Barrier off South Africa. This study reveals a process of divergence and speciation within a globally‐distributed, mobile marine predator, and indicates the importance of the East Pacific Barrier to this evolutionary process.  相似文献   

17.
This work provides an account of the systematics and phylogeny of Hypselodoris . Aspects of the morphology of 42 species are described and the systematic status of an additional 11 species is discussed. Twelve new species are described: Hypselodoris alboterminata, H. bertschi, H. bollandi, H. fucata, H. iacula, H. insulana, H. krakatoa, H. paulinae, H. reidi, H. rudmani, H. violabranchia and H. zephyra. A phylogenetic analysis supports the monophyly of Hypselodoris and Risbecia . Two distinct clades of Hypselodoris are present. One contains species from the Atlantic and eastern Pacific while the other contains species limited to the Indo-Pacific tropics and adjacent temperate regions. Species from the Atlantic and eastern Pacific are bluish in body colour and have a plesiomorphically large receptaculum seminis while Indo-Pacific taxa are variably coloured and all have a minute receptaculum seminis. The distribution and size of mantle glands provides a wealth of morphological characters. With few exceptions, mantle glands vary in closely related species and are important for distinguishing members of smaller clades. Mantle gland distribution is therefore useful in identifying preserved material that is difficult to identify to species in the absence of the pigment of living specimens. Similar colour patterns found in sympatric species of Hypselodoris appear to be a result of both common descent and convergence between less closely related lineages. Biogeographic distributions of sister taxa provide several examples of vicariance. Examination of these cases shows that no single vicariant pattern is present, but vicariance appears to occur at the margins of the Indo-Pacific rather than centrally. Some vicariance occurs even within archipelagos such as the Hawaiian Islands. These cases largely refute the generality of the hypothesis of Springer (1982), that Pacific Plate and Australasian Plate endemic sister taxa should predominate.  相似文献   

18.
Bigeye (Thunnus obesus) is a large, pelagic, and migratory species of tuna that inhabits tropical and temperate marine waters worldwide. Previous studies based on mitochondrial RFLP data have shown that bigeye tunas from the Atlantic Ocean are the most interesting from a genetic point of view. Two highly divergent mitochondrial haplotype clades (I and II) coexist in the Atlantic Ocean. One is almost exclusive of the Atlantic Ocean whereas the other is also found in the Indo-Pacific Ocean. Bigeye tuna from the Atlantic Ocean is currently managed as a single stock, although this assumption remains untested at the genetic level. Therefore, genetic diversity was determined at the mitochondrial control region to test the null hypothesis of no population structure in bigeye tuna from the Atlantic Ocean. A total of 331 specimens were sampled from four locations in the Atlantic Ocean (Canada, Azores, Canary Islands, and Gulf of Guinea), and one in the Indian and Pacific Oceans, respectively. The reconstructed neighbor-joining phylogeny confirmed the presence of Clades I and II throughout the Atlantic Ocean. No apparent latitudinal gradient of the proportions of both clades in the different collection sites was observed. Hierarchical AMOVA tests and pairwise phi(ST) comparisons involving Atlantic Ocean Clades I and II were consistent with a single stock of bigeye tuna in the Atlantic Ocean. Population genetic analyses considering phylogroups independently supported gene flow within Clade II throughout the Atlantic Ocean, and within Clade I between Atlantic and Indo-Pacific Oceans. The latter result suggests present uni-directional gene flow from the Indo-Pacific into the Atlantic Ocean. Moreover, mismatch analyses dated divergence of Clades I and II during the Pleistocene, as previously proposed. In addition, migration rates were estimated using coalescent methods, and showed a net migration from Atlantic Ocean feeding grounds towards the Gulf of Guinea, the best-known spawning ground of Atlantic bigeye tuna.  相似文献   

19.
Members of the subfamily Neothoracocotylinae are gastrocotylinean monogeneans on the gills of scombrid fishes of the genera Scomberomorus and Acanthocybium, and reportedly of a coryphaenid fish belonging to the genus Coryphaena. We revise the diagnosis of the subfamily and its two genera and accept only two species as valid. Neothoracocotyle acanthocybii (Meserve, 1938) Hargis, 1956 is known from Acanthocybium solandri throughout the Pacific Ocean and in the western Atlantic. N. coryphaenae (Yamaguti, 1938) Hargis, 1956, known only from a single specimen and described from Coryphaena hippurus in Japan, is synonymised with N. acanthocybii. The sole member of Scomberocotyle, S. scomberomori (Koratha, 1955) Hargis, 1956, infects five species of Scomberomorus in the eastern Pacific Ocean and the western and eastern Atlantic. We record this worm from several new hosts and/or localities, including S. sierra and S. concolor in the eastern Pacific (Mexico to Colombia), S. maculatus and S. cavalla in the western Atlantic (USA to Brazil), and S. tritor in the eastern Atlantic (Sierra Leone to Nigeria).  相似文献   

20.
The basking shark (Cetorhinus maximus) is found in temperate waters throughout the world's oceans, and has been subjected to extensive exploitation in some regions. However, little is known about its current abundance and genetic status. Here, we investigate the diversity of the mitochondrial DNA control region among samples from the western North Atlantic, eastern North Atlantic, Mediterranean Sea, Indian Ocean and western Pacific. We find just six haplotypes defined by five variable sites, a comparatively low genetic diversity of pi=0.0013 and no significant differentiation between ocean basins. We provide evidence for a bottleneck event within the Holocene, estimate an effective population size (Ne) that is low for a globally distributed species, and discuss the implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号