首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Andreakis N  Kooistra WH  Procaccini G 《Gene》2007,406(1-2):144-151
Eight polymorphic nuclear microsatellite loci were identified from the invasive Indo-Pacific Mediterranean strain of Asparagopsis taxiformis. Microsatellite markers were tested against a panel of specimens collected along the Italian (Elba, Naples) and Californian (Catalina Island) coasts, all belonging to the same mitochondrial lineage. In addition, we used Hawaiian specimens, belonging to a closely related mitochondrial lineage. The markers amplified in all of the specimens but failed consistently in thalli of two more distantly related mitochondrial lineages of A. taxiformis as well as in specimens belonging to the sister species Asparagopsis armata. Since haploid female individuals among the Mediterranean specimens contained cystocarps, genotyping was performed on supposedly haploid female specimens and supposedly diploid cystocarps separately. As expected, external allelic contribution was detected in the cystocarps. However, even after removal of these reproductive structures, gametophyte thalli exhibited patterns consisting of up to three alleles in all of the tested populations indicating polyploidy. An elevated number of distinct genotypes (up to 85%) were found per population, suggesting high intra-population variation. Results showed high genetic similarity between the two Mediterranean populations screened and lower similarity between these two and the Californian one within the same mitochondrial lineage. Lowest similarity was found between these three and the Hawaiian population belonging to the other related mitochondrial lineage 1.  相似文献   

2.
3.
Molecular and breeding studies on two pan-tropical marine red algae reveal vastly different levels of genetic variation and reproductive isolation. Sequenced DNA regions from the nuclear, mitochondrial and plastid genomes (partial LSU rRNA, cox2-3 spacer, RuBisCo spacer, respectively) revealed high genetic variation among individuals of Spyridia filamentosa. An rbcL analysis shows that Spyridia is a monophyletic genus distinct from other Ceramiaceae sampled, suggesting that the Ceramiaceae could be paraphyletic. There is complete congruence between all data sets of S. filamentosa, showing a well-supported phylogeographic pattern with samples from the Pacific distinct from Atlantic and Indian Ocean samples. One western Mediterranean sample is associated with Atlantic specimens, while an eastern Mediterranean sample has closer affinities to Pacific samples, possibly indicating a recent cryptic introduction into the eastern Mediterranean. Limited breeding studies imply that these samples are mostly reproductively isolated, whereas a successful cross demonstrated maternal inheritance of organellar DNA. These data indicate that S. filamentosa exists as several cryptic species. Murrayella periclados exhibits low levels of genetic variation and no phylogeographic structure, and almost complete reproductive compatibility between isolates. This suggests that all M. periclados samples share a recent common ancestor that may have dispersed relatively rapidly, or that rates of base pair substitution between these two species vary greatly. Rapid longdistance dispersal of M. periclados is not indicated by what is known of the biology of M. periclados, especially in comparison with S. filamentosa, which appears to be a much better candidate for long-distance dispersal. These data demonstrate that red algal morphospecies are not equivalent units of diversity, with implications for our view of red algal biodiversity and evolution.  相似文献   

4.
Halimeda (Bryopsidales), a genus of calcified, segmented green seaweeds, abounds in reefs and lagoons throughout the tropics. To investigate phylogenetic, phylogeographic, and historic ecological relationships of the genus, the nuclear rDNA including the SSU and both ITS regions were sequenced. A maximum likelihood tree revealed the following: (1) there were anatomical and morphological synapomorphies for five well-supported lineages; (2) the last common ancestor of one lineage invaded sandy substrata; those of two other lineages established in wave-affected habitats, whereas the cenancestor of the remaining two lineages occupied sheltered rocky slopes. Yet, several species adapted to new habitats subsequently, resulting in several cases of convergence; (3) all lineages separated into Atlantic and Indo-Pacific daughters, likely resulting from the rise of the Panamanian Isthmus. Each daughter pair gave rise to additional convergent species in similar habitats in different oceans; (4) Halimeda opuntia, the only monophyletic pantropical species detected so far, dispersed from the Indo-Pacific into the Atlantic well after the closure event; (5) minor SSU-sequence differences across species and phylogeographic patterns of vicariance indicated a relatively recent diversification of the extant diversity. Cretaceous and Early Tertiary fossil look-alikes of modern species must then have resulted from iterative convergence.  相似文献   

5.
Sixty‐five accessions of the species‐rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species‐level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0–3 bp). Comparisons to previously published mitochondrial cox2–3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2–3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.  相似文献   

6.
Six intraspecific lineages (Lineages 1–6) of Asparagopsis taxiformis have been previously established based on mitochondrial cox2‐cox3 intergenic spacer and a partial cox1 sequences. ‘Lineage 2’ (L2) was suggested to be a recent introduction to the Mediterranean Sea, but its source population has not yet been identified. In order to clarify the nature of northwestern Pacific populations, we performed extensive sampling in Japan (60 individuals from 16 locations) and molecular phylogenetic analyses based on mitochondrial sequences. Sixteen additional individuals, collected from eight locations in the Indo‐Pacific, Caribbean, and Mediterranean regions, were also analyzed. Combined sequence analyses revealed that the Japanese populations only consisted of L2. Out of 19 combined haplotypes identified within L2, two are shared between Japan and the Mediterranean Sea and the Hawaiian Islands, and 12 were identified as endemic to Japan. Genetic analyses of population differentiation suggested that Japanese populations are genetically isolated from the Mediterranean and the Hawaiian populations. A genetic disjunction appears to separate two subpopulations within Japan: one between Toi and Kagoshima and the other between Ojikajima Island and Kagoshima in the Kyushu area.  相似文献   

7.
Two geographically nonoverlapping species are currently described within the sparid genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Mediterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum (Steentjie) considered endemic to southern Africa. To address prominent knowledge gaps this study investigated range-wide phylogeographic structure across both species. Mitochondrial DNA sequences revealed deep phylogeographic structuring with four regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and three more closely related Atlantic clades [NE Atlantic, Angola and South Africa (corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentiation of S. emarginatum supports its validity as a distinct species endemic to South African waters. However, the results also indicate that S. cantharus may be a cryptic species complex wherein the various regional lineages represent established/incipient species. A robust multilocus genetic assessment combining morphological data and detailing interactions among lineages is needed to determine the full diversity within Spondyliosoma and the most adequate biological and taxonomic status.  相似文献   

8.
Phylogeographic signal provided by the newly developed 23S plastid rRNA marker (universal plastid amplicon, UPA) and the cytochrome oxidase subunit I gene marker (COI) in the freshwater red alga Batrachospermum helminthosum, throughout its range in North America, was investigated. These markers were compared in individuals from a previous study using the cytochrome oxidase 2–3 spacer region ( cox 2–3), which has yielded the most useful data to date with 13 haplotypes among geographic locations. Five haplotypes were resolved for the UPA, differing by only one to two base pairs (bp), and we conclude that this marker may be more appropriate for studying interspecific variation. In contrast, the COI gene revealed 16 haplotypes, differing from one to 44 base pairs or up to 6.6% sequence variation. The intraspecific variation of COI in this taxon is much greater than that reported thus far for marine red algae (generally <5 bp). The intraspecific variation within B. helminthosum is in accord with levels shown in Batrachospermum macrosporum (48 bp within distant locations in Brazil). The COI gene is comparable to the cox 2–3 spacer for phylogeographic studies as the haplotype networks were similar and showed the same geographic patterns. To our knowledge, this is the first comparison of these three regions for phylogeographic research in the red algae.  相似文献   

9.
To test the hypothesis that nonphysical barriers to gene flow play a role in the divergence of low-latitude seabird populations, we applied phylogeographic methods to mitochondrial control region sequence variation in a global sample of masked boobies (Sula dactylatra). In accord with previous studies, we found that Indo-Pacific and Atlantic haplotypes form two divergent lineages, excluding one haplotype previously attributed to secondary contact between the Indian Ocean and the Caribbean Sea. Within the Indo-Pacific and the Atlantic, we found a relatively large number of haplotypes, many of which were unique to a single population. Although haplotypes from most populations were found in more than one higher-level clade, nested clade analysis revealed a significant association between clades and geography for the majority of higher-level clades, most often interpreted as a consequence of isolation by distance. We found low levels of gene flow within Indo-Pacific and Atlantic populations, and a significant correlation between gene flow and geographical distance among Indo-Pacific populations. We estimate that Indo-Pacific masked boobies experienced rapid population growth approximately 180,000 years ago and that the majority of Indo-Pacific and Atlantic populations diverged within the last approximately 115,000 years. These combined data suggest that the predominant pattern between Indo-Pacific and Atlantic populations is long-term isolation by physical barriers to gene flow. In contrast, populations within these regions appear to have diverged despite few obvious physical barriers to gene flow, perhaps as a consequence of limited natal dispersal combined with local adaptation and/or genetic drift.  相似文献   

10.
Previous studies on the common ragworm Hediste diversicolor (Polychaeta: Nereididae) revealed a marked genetic fragmentation across its distribution and the occurrence of sibling taxa in the Baltic Sea. These results suggested that the phylogeographic patterns of H. diversicolor could reflect interactions between cryptic differentiation and multiple colonization events. This study aims to describe the large-scale genetic structuring of H. diversicolor and to trace the phylogeographic origins of the genetic types described in the Baltic Sea. Samples of H. diversicolor (2 <  n  < 28) were collected at 16 locations across the NE Atlantic coasts of Europe and Morocco and in the Mediterranean, Black and Caspian Seas and sequenced at two mitochondrial gene fragments (COI and cyt b , 345 and 290 bp, respectively). Bayesian analyses revealed deep phylogeographic splits yielding three main clades corresponding to populations (i) from the NE Atlantic coasts (from Germany to Morocco) and from part of the Western Mediterranean, (ii) from the Mediterranean Sea, and (iii) from the Black and Caspian Seas. These clades are further divided in well-supported subclades including populations from different regions of NE Atlantic and Mediterranean (i.e. Portugal/Morocco, Western Mediterranean, Adriatic Sea). The Baltic Sea comprises three sympatric lineages sharing a common evolutionary history with populations from NE Atlantic, Western Mediterranean and Black/Caspian Seas, respectively. Hence, the current patterns of genetic structuring of H. diversicolor appear as the result of allopatric isolation, multiple colonization events and possible adaptation to local environmental conditions.  相似文献   

11.
Aim The rise of the Isthmus of Panama and the formation of ‘geminate’ species pairs serves as an important model of allopatric speciation. However, to function as a model system, hypothesized geminates must first be shown to be each other’s closest living relatives. If the presence of cryptic taxa obscures true relationships, the biogeographical histories of transisthmian taxa are likely to be misinterpreted. We have therefore completed a phylogeographic survey of the transisthmian bivalve subgenus Acar in the genus Barbatia to characterize patterns of tropical American diversity and to place transisthmian taxa in a regional phylogeographic context. Location Tropical America. Methods Mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer (ITS) sequences were obtained from 233 specimens of Acar. Sequences were analysed using cladistic and Bayesian methods. Divergence times between species were inferred from net nucleotide divergences and a coalescence‐based method. Results The survey revealed 22 COI clades that were also monophyletic at ITS, indicating that the taxonomy of Acar is potentially greater than a fivefold diversity underestimate. The lone previously recognized geminate [Barbatia (Acar) gradata and Barbatia (Acar) domingensis] is composed of 15 clades. Among the four transisthmian lineages identified, two diverged more than 14 Ma; the two other geminates split just prior to the time of final seaway closure. In addition to a fourfold increase in the number of known geminates, our data show that within‐basin diversification has been more impressive, with one geminate splitting into five monophyletic clades in the Western Atlantic alone since seaway closure. Electron microscopy of the larval shells of specimens indicates that the transisthmian lineage with the greatest rate of post‐Isthmian diversification possesses non‐planktonic larvae, a life‐history feature linked to high speciation rates. Main conclusions Our analyses revealed that the identities of geminate pairs split by the Isthmus of Panama were obscured by extremely high tropical American cryptic diversity. Although we have identified four geminates, only two appear to have been split by the Isthmus. Our uncovering of extensive post‐Isthmian diversification is consistent with the palaeontological perspective that the final closure of the Central American Seaway was followed by high rates of subgeneric diversification, particularly in the tropical Western Atlantic.  相似文献   

12.
Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages.  相似文献   

13.
We used a phylogeographic approach to elucidate the evolutionary history of a lineage of frogs, known as Pristimantis (formerly Eleutherodactylus) ridens (Anura: Brachycephalidae), restricted to the wet forests occurring along the Caribbean versant of isthmian Central America as well as the disjunct wet forest on the Pacific slope of Costa Rica. We placed our phylogeographic study of P. ridens within a larger molecular phylogenetic analysis of Central American Pristimantis. All phylogenetic inferences were based on a 1455 base pair fragment of mitochondrial DNA, containing the complete ND2 gene and five flanking tRNA genes. Our reconstruction of the intraspecific phylogeny of P. ridens yielded a basal trichotomy dating to an estimated 12+ million years ago (Ma), consisting of central Panama, western Panama, and Costa Rica plus Honduras. Thus, the presence of P. ridens appears to predate the completion of the Isthmus 3.1Ma. Using a parametric bootstrap (SOWH) test, we evaluated four a priori zoogeographic hypotheses for the origin and spread of P. ridens. This analysis suggested that the P. ridens populations on the Caribbean versant of Costa Rica were established by Pacific versant ancestors only recently, in contrast to the very old lineages found in Panama. Our results support a model of Miocene colonization, long-term geographic stasis, followed by rapid dispersal across the Caribbean lowlands during the Pliocene or Pleistocene.  相似文献   

14.
Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2-3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128,000 BP and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20,000 BP) in the Hurd Deep, an enigmatic trench in the English Channel.  相似文献   

15.
The desiccation of the Mediterranean Sea during the Messinian Salinity Crisis 6.0-5.3 million years ago (Ma), caused a major extinction of the marine ichthyofauna of the Mediterranean. This was followed by an abrupt replenishment of the Mediterranean from the Atlantic after the opening of the Strait of Gibraltar. In this study, we combined demographic and phylogeographic approaches using mitochondrial and nuclear DNA markers to test the alternative hypotheses of where (Atlantic or Mediterranean) and when (before or after the Messinian Salinity Crisis) speciation occurred in the Mediterranean damselfish, Chromis chromis. The closely related geminate transisthmian pair Chromis multilineata and Chromis atrilobata was used as a way of obtaining an internally calibrated molecular clock. We estimated C. chromis speciation timing both by determining the time of divergence between C. chromis and its Atlantic sister species Chromis limbata (0.93-3.26 Ma depending on the molecular marker used, e.g. 1.23-1.39 Ma for the control region), and by determining the time of coalescence for C. chromis based on mitochondrial control region sequences (0.14-0.21 Ma). The time of speciation of C. chromis was always posterior to the replenishment of the Mediterranean basin, after the Messinian Salinity Crisis. Within the Mediterranean, C. chromis population structure and demographic characteristics revealed a genetic break at the Peloponnese, Greece, with directional and eastbound gene flow between western and eastern groups. The eastern group was found to be more recent and with a faster growing population (coalescent time = 0.09-0.13 Ma, growth = 485.3) than the western group (coalescent time = 0.13-0.20 Ma, growth = 325.6). Our data thus suggested a western origin of C. chromis, most likely within the Mediterranean. Low sea water levels during the glacial periods, the hydrographic regime of the Mediterranean and dispersal restriction during the short pelagic larval phase of C. chromis (18-19 days) have probably played an important role in C. chromis historical colonization.  相似文献   

16.
The provenance of white sharks (Carcharodon carcharias) in the Mediterranean is both a conundrum and an important conservation issue. Considering this species's propensity for natal philopatry, any evidence that the Mediterranean stock has little or no contemporary immigration from the Atlantic would suggest that it is extraordinarily vulnerable. To address this issue we sequenced the mitochondrial control region of four rare Mediterranean white sharks. Unexpectedly, the juvenile sequences were identical although collected at different locations and times, showing little genetic differentiation from Indo-Pacific lineages, but strong separation from geographically closer Atlantic/western Indian Ocean haplotypes. Historical long-distance dispersal (probably a consequence of navigational error during past climatic oscillations) and potential founder effects are invoked to explain the anomalous relationships of this isolated 'sink' population, highlighting the present vulnerability of its nursery grounds.  相似文献   

17.
Swamp eels of the genera Synbranchus and Ophisternon are secondary freshwater fishes whose biogeography provides evidence of their long residence in Mesoamerica, while their impoverished species-level taxonomy might suggest a more recent diversification or a conservative morphology. We have inferred the phylogenetic relationships of Synbranchus marmoratus and Ophisternon aenigmaticum from 45 drainages throughout South, Central America, and Cuba based on mitochondrial genes (cytochrome b and ATPase 8/6). Phylogeographic analysis supported the monophyly of Mesoamerican O. aenigmaticum although our results suggest that S. marmoratus is not a monophyletic group. We found a evolutionary differentiated Synbranchus mtDNA lineage inhabiting Las Perlas islands (Pacific Panama) that appeared to be taxonomically distinct and separated for a long period of time from the main Synbranchus clade. Major synbranchid clades were also corroborated with the nuclear RAG-1 gene (1171-bp). Application of two fish-based mtDNA clocks (1.05-1.3% pairwise divergence/million year (Ma)), is in accordance with the Gondwanian origin suggested for the Synbranchidae. The mtDNA lineages exhibited a remarkable geographic structure in Central America suggesting that vicariance has most likely promoted the Synbranchus and Ophisternon mtDNA diversification. Although our data indicate the importance of the Pacific area in Synbranchus differentiation, the mtDNA divergence between South and Central American Synbranchus is too small to support Cretaceous colonization via the proto-Antillean bridge suggested by Rosen [Syst. Zool. 24 (1976) 431]. Instead, our phylogeographic results suggest that Ophisternon and Synbranchus mtDNA clades most likely colonized Central America during the Miocene (12.7-23Ma) prior the final closure of the Isthmus of Panama (3.3Ma).  相似文献   

18.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

19.
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity.  相似文献   

20.
Keeney DB  Heist EJ 《Molecular ecology》2006,15(12):3669-3679
Although many coastal shark species have widespread distributions, the genetic relatedness of worldwide populations has been examined for few species. The blacktip shark, (Carcharhinus limbatus), inhabits tropical and subtropical coastal waters throughout the world. In this study, we examined the genetic relationships of blacktip shark populations (n = 364 sharks) throughout the majority of the species' range using the entire mitochondrial control region (1067-1070 nucleotides). Two geographically distinct maternal lineages (western Atlantic, Gulf of Mexico, and Caribbean Sea clades, and eastern Atlantic, Indian, and Pacific Ocean clades) were identified and shallow population structure was detected throughout their geographic ranges. These findings indicate that a major population subdivision exists across the Atlantic Ocean, but not the Pacific Ocean. The historical dispersal of this widespread, coastal species may have been interrupted by the rise of the Isthmus of Panama. This scenario implies historical dispersal across the Pacific Ocean (supported by the recovery of the same common haplotype from the Philippines, Hawaii, and the Gulf of California reflecting recent/contemporary dispersal abilities) and an oceanic barrier to recent migration across the Atlantic. Genetic structure within the eastern Atlantic/Indo-Pacific (Phi(ST) = 0.612, P < 0.001) supports maternal philopatry throughout this area, expanding previous western Atlantic findings. Eastern Atlantic/Indo-Pacific C. limbatus control region haplotypes were paraphyletic to Carcharhinus tilstoni haplotypes in our maximum-parsimony analysis. The greater divergence of western Atlantic C. limbatus than C. tilstoni from eastern Atlantic/Indo-Pacific C. limbatus reflects the taxonomic uncertainty of western Atlantic C. limbatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号