首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract We investigated the genetic structure of blacktip shark (Carcharhinus limbatus) continental nurseries in the northwestern Atlantic Ocean, Gulf of Mexico, and Caribbean Sea using mitochondrial DNA control region sequences and eight nuclear microsatellite loci scored in neonate and young-of-the-year sharks. Significant structure was detected with both markers among nine nurseries (mitochondrial PhiST = 0.350, P < 0.001; nuclear PhiST = 0.007, P < 0.001) and sharks from the northwestern Atlantic, eastern Gulf of Mexico, western Gulf of Mexico, northern Yucatan, and Belize possessed significantly different mitochondrial DNA haplotype frequencies. Microsatellite differentiation was limited to comparisons involving northern Yucatan and Belize sharks with nuclear genetic homogeneity throughout the eastern Gulf of Mexico, western Gulf of Mexico, and northwestern Atlantic. Differences in the magnitude of maternal vs. biparental genetic differentiation support female philopatry to northwestern Atlantic, Gulf of Mexico, and Caribbean Sea natal nursery regions with higher levels of male-mediated gene flow. Philopatry has produced multiple reproductive stocks of this commercially important shark species throughout the range of this study.  相似文献   

2.
Phylogenetic and paleontological analyses are combined to reveal patterns of species origination and divergence and to define the significance of potential and actual barriers to dispersal in Conus, a species-rich genus of predatory gastropods distributed throughout the world's tropical oceans. Species-level phylogenetic hypotheses are based on nucleotide sequences from the nuclear calmodulin and mitochondrial 16S rRNA genes of 138 Conus species from the Indo-Pacific, eastern Pacific, and Atlantic Ocean regions. Results indicate that extant species descend from two major lineages that diverged at least 33 mya. Their geographic distributions suggest that one clade originated in the Indo-Pacific and the other in the eastern Pacific + western Atlantic. Impediments to dispersal between the western Atlantic and Indian Oceans and the central and eastern Pacific Ocean may have promoted this early separation of Indo-Pacific and eastern Pacific + western Atlantic lineages of Conus. However, because both clades contain both Indo-Pacific and eastern Pacific + western Atlantic species, migrations must have occurred between these regions; at least four migration events took place between regions at different times. In at least three cases, incursions between regions appear to have crossed the East Pacific Barrier. The paleontological record illustrates that distinct sets of Conus species inhabited the Indo-Pacific, eastern Pacific + western Atlantic, and eastern Atlantic + former Tethys Realm in the Tertiary, as is the case today. The ranges of <1% of fossil species (N=841) spanned more than one of these regions throughout the evolutionary history of this group.  相似文献   

3.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

4.
Selachohemecus benzi Bullard & Overstreet n. sp. infects the heart and kidney of the blacktip shark Carcharhinus limbatus in the northern Gulf of Mexico off Florida and Mississippi, USA. Specimens of S. olsoni Short, 1954, the only congener and only other named blood fluke reported from a chondrichthyan in the Gulf of Mexico, were collected from the heart of the Atlantic sharpnose shark Rhizoprionodon terraenovae from two new localities, Apalachicola Bay, Florida, and Mississippi Sound, Mississippi, USA. The new species differs from S. olsoni by having a larger body (1.4-3.8 mm long), robust tegumental body spines numbering 51-63 along each lateral body margin, a testis extending from the posterior caeca to the ovary, and a medial ovary with lobes. We amend the diagnosis of Selachohemecus Short, 1954 to accommodate it and provide a diagnostic key for all named chondrichthyan blood flukes.  相似文献   

5.
Stable-isotope values of a scalloped hammerhead Sphyrna lewini and blacktip shark Carcharhinus limbatus and their respective embryos were analysed. Embryos of both species were enriched in δ(15) N compared to their mothers (0·82 and 0·88‰, respectively), but fractionation of δ(13) C varied. Embryonic S. lewini were enriched (1·00‰) in δ(13) C while C. limbatus were depleted (0·27‰) relative to their mothers.  相似文献   

6.
Approximately three million years ago the Isthmus of Panama formed an impenetrable land barrier between the tropical eastern Pacific Ocean and the tropical western Atlantic Ocean. Since this time, isolated geminate species have evolved from once contiguous populations, either side of the barrier. One such organism whose distribution is divided by the Isthmus is the tropical brittlestar Ophiactis savignyi, once suggested to be the most common brittlestar in the world. Rather than showing a genetic pattern consistent with a history of isolation, we show that this species has recently dispersed between the Pacific Ocean and the western Atlantic Ocean. This conclusion is based upon a phylogenetic analysis using sequences of the COI mitochondrial DNA gene from these populations. Identical haplotypes between oceans, and a genetic signature of population expansion, provide compelling evidence that the western Atlantic contains at least one cluster of haplotypes recently derived from the Indo-Pacific. Inadvertent human-aided translocation of individuals, presumably in ballast water or fouling communities, is strongly implicated as a mechanism for dispersal between oceans. We believe that cryptic marine invasions are likely to be common and our awareness of them will rapidly increase as systematic and phylogeographic knowledge of marine taxa grow.  相似文献   

7.
The silky shark, Carcharhinus falciformis, is a large-bodied, oceanic-coastal, epipelagic species found worldwide in tropical and subtropical waters. Despite its commercial importance, concerns about overexploitation, and likely ecological significance of this shark as an upper trophic-level predator, understanding of its population dynamics remains unclear for large parts of its distribution. We investigated the genetic diversity, population structure and demographic history of the silky shark along the western Atlantic Ocean based on the use of 707 bp of the mitochondrial DNA control region (mtCR). A total of 211 silky sharks were sampled, originating from five areas along the western Atlantic Ocean. The mitochondrial sequences revealed 40 haplotypes, with overall haplotype and nucleotide diversities of 0.88 (± 0.012) and 0.005 (± 0.003), respectively. The overall population structure was significantly different among the five western Atlantic Ocean regions. Phylogenetic analysis of mtCR sequences from globally sourced silky shark samples revealed two lineages, comprising a western Atlantic lineage and western Atlantic—Indo-Pacific lineage that diverged during the Pleistocene Epoch. In general, tests for the demographic history of silky sharks supported a population expansion for both the global sample set and the two lineages. Although our results showed that silky sharks have high genetic diversity, the current high level of overexploitation of this species requires long-term, scientifically informed management efforts. We recommend that fishery management and conservation plans be done separately for the two western Atlantic matrilineal populations revealed here.  相似文献   

8.
In the north-west Atlantic Ocean, stock assessments conducted for some commercially harvested coastal sharks indicate declines from 64 to 80% with respect to virgin population levels. While the status of commercially important species is available, abundance trend information for other coastal shark species in the north-west Atlantic Ocean are unavailable. Using a generalized linear modelling (GLM) approach, a relative abundance index was derived from 1994 to 2009 using observer data collected in a commercial bottom longline fishery. Trends in abundance and average size were estimated for bull shark Carcharhinus leucas, spinner shark Carcharhinus brevipinna, tiger shark Galeocerdo cuvier and lemon shark Negaprion brevirostris. Increases in relative abundance for all shark species ranged from 14% for C. brevipinna, 12% for C. leucas, 6% for N. brevirostris and 3% for G. cuvier. There was no significant change in the size at capture over the time period considered for all species. While the status of shark populations should not be based exclusively on abundance trend information, but ultimately on stock assessment models, results from this study provide some cause for optimism on the status of these coastal shark species.  相似文献   

9.
Bigeye (Thunnus obesus) is a large, pelagic, and migratory species of tuna that inhabits tropical and temperate marine waters worldwide. Previous studies based on mitochondrial RFLP data have shown that bigeye tunas from the Atlantic Ocean are the most interesting from a genetic point of view. Two highly divergent mitochondrial haplotype clades (I and II) coexist in the Atlantic Ocean. One is almost exclusive of the Atlantic Ocean whereas the other is also found in the Indo-Pacific Ocean. Bigeye tuna from the Atlantic Ocean is currently managed as a single stock, although this assumption remains untested at the genetic level. Therefore, genetic diversity was determined at the mitochondrial control region to test the null hypothesis of no population structure in bigeye tuna from the Atlantic Ocean. A total of 331 specimens were sampled from four locations in the Atlantic Ocean (Canada, Azores, Canary Islands, and Gulf of Guinea), and one in the Indian and Pacific Oceans, respectively. The reconstructed neighbor-joining phylogeny confirmed the presence of Clades I and II throughout the Atlantic Ocean. No apparent latitudinal gradient of the proportions of both clades in the different collection sites was observed. Hierarchical AMOVA tests and pairwise phi(ST) comparisons involving Atlantic Ocean Clades I and II were consistent with a single stock of bigeye tuna in the Atlantic Ocean. Population genetic analyses considering phylogroups independently supported gene flow within Clade II throughout the Atlantic Ocean, and within Clade I between Atlantic and Indo-Pacific Oceans. The latter result suggests present uni-directional gene flow from the Indo-Pacific into the Atlantic Ocean. Moreover, mismatch analyses dated divergence of Clades I and II during the Pleistocene, as previously proposed. In addition, migration rates were estimated using coalescent methods, and showed a net migration from Atlantic Ocean feeding grounds towards the Gulf of Guinea, the best-known spawning ground of Atlantic bigeye tuna.  相似文献   

10.
There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.  相似文献   

11.
This study shows a range extension for the Australian blacktip shark Carcharhinus tilstoni, which was believed to be restricted to Australia's tropical waters, of >1000 km into temperate waters, revealing its vulnerability to a wider commercial fishery.  相似文献   

12.
The basking shark (Cetorhinus maximus) is found in temperate waters throughout the world's oceans, and has been subjected to extensive exploitation in some regions. However, little is known about its current abundance and genetic status. Here, we investigate the diversity of the mitochondrial DNA control region among samples from the western North Atlantic, eastern North Atlantic, Mediterranean Sea, Indian Ocean and western Pacific. We find just six haplotypes defined by five variable sites, a comparatively low genetic diversity of pi=0.0013 and no significant differentiation between ocean basins. We provide evidence for a bottleneck event within the Holocene, estimate an effective population size (Ne) that is low for a globally distributed species, and discuss the implications.  相似文献   

13.
Precaudal vertebral counts were used to distinguish between 237 morphologically similar Carcharhinus limbatus and Carcharhinus tilstoni and were congruent with differences in reproductive ecology between the species. In addition to differing lengths at maturity and adult body size, the two species had asynchronous parturition, were born at different sizes and the relative frequencies of neonates differed in two coastal nursery areas. Despite evidence that hybridization can occur, these differences suggest the species are largely reproductively isolated.  相似文献   

14.
Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.  相似文献   

15.
Aim Most reef fishes are site‐attached, but can maintain a broad distribution through their highly dispersive larval stage. The whitetip reef shark (Triaenodon obesus) is site‐attached, yet maintains the largest Indo‐Pacific distribution of any reef shark while lacking the larval stage of bony (teleost) fishes. Here we use mitochondrial DNA (mtDNA) sequence data to evaluate the enigma of the sedentary reef shark that maintains a distribution across two‐thirds of the planet. Location Tropical Pacific and Indian Oceans. Methods We analysed 1025 base pairs of the mtDNA control region in 310 individuals from 25 locations across the Indian and Pacific Oceans. Phylogeographic and population genetic analyses were used to reveal the dispersal and recent evolutionary history of the species. Results We resolved 15 mtDNA control region haplotypes, but two comprised 87% of the specimens and were detected at nearly every location. Similar to other sharks, genetic diversity was low (h = 0.550 ± 0.0254 and π = 0.00213 ± 0.00131). Spatial analyses of genetic variation demonstrated strong isolation across the Indo‐Pacific Barrier and between western and central Pacific locations. Pairwise ΦST comparisons indicated high connectivity among archipelagos of the central Pacific but isolation across short distances of contiguous habitat (Great Barrier Reef) and intermittent habitat (Hawaiian Archipelago). In the eastern Pacific only a single haplotype (the most common one in the central Pacific) was observed, indicating recent dispersal (or colonization) across the East Pacific Barrier. Main conclusions The shallow haplotype network indicates recent expansion of modern populations within the last half million years from a common ancestor. Based on the distribution of mtDNA diversity, this began with an Indo‐West Pacific centre of origin, with subsequent dispersal to the Central Pacific and East Pacific. Genetic differences between Indian and Pacific Ocean populations are consistent with Pleistocene closures of the Indo‐Pacific Barrier associated with glacial cycles. Pairwise population comparisons reveal weak but significant isolation by distance, and notably do not indicate the high coastal connectivity observed in other shark species. The finding of population structure among semi‐contiguous habitats, but population connectivity among archipelagos, may indicate a previously unsuspected oceanic dispersal behaviour in whitetip reef sharks.  相似文献   

16.
Postoncomiracidia of Dionchus sp. are described from specimens collected from the skin of 2 blacktip sharks Carcharhinus limbatus, captured in the northern Gulf of Mexico. The parasites resemble nonciliated oncomiracidia hatched from eggs laid by Dionchus sp. on gills of a cobia Rachycentron canadum and adults of Dionchus remorae that were collected from gills of a common sharksucker Echeneis naucrates, captured in association with a third blacktip shark. The hamuli of the postoncomiracidia were morphologically similar to those of adult D. remorae. This is the first report of dionchids from an elasmobranch and from a location other than the gills. These findings support the idea that some dionchid oncomiracidia colonize the skin of sharks or other aquatic vertebrates that sponsor remoras, prior to transferring to other remoras and maturing.  相似文献   

17.
We examined the age and growth of the blacknose shark, Carcharhinus acronotus, in the western North Atlantic Ocean by obtaining direct age estimates using vertebral centra. We verified annual deposition of growth increments with marginal increment analysis and validated it by analyzing vertebrae marked with oxytetracycline from a female blacknose shark held in captivity. Von Bertalanffy growth parameters indicated that female blacknose sharks have a lower growth constant (k), a larger theortical maximum size (L), and are longer lived than males. We compared these growth parameters for blacknose sharks in the western North Atlantic Ocean to growth parameters for blacknose sharks collected in the eastern Gulf of Mexico to test for differences between regions. Females in the western North Atlantic Ocean have a significantly lower L, lower k, and a higher theoretical longevity than females in the Gulf of Mexico. Males in the western North Atlantic Ocean have a higher L<>, lower k, and higher theoretical longevity than males in the Gulf of Mexico. The significant differences between these life history parameters for blacknose sharks suggest that, when possible, future management initiatives concerning blacknose sharks should consider managing the populations in the western North Atlantic and the Gulf of Mexico as separate stocks.  相似文献   

18.
This study reports the first bicephalic embryo of smalltail shark Carcharhinus porosus, which was removed from a pregnant female in coastal waters of the tropical eastern Pacific Ocean. The observation suggested that although the individual's body was well formed, the malformation of the head would have affected it survival.  相似文献   

19.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

20.
Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号