首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atif SM  Hasan I  Ahmad N  Khan U  Owais M 《FEBS letters》2006,580(9):2183-2190
The membrane-membrane fusion during fertilization of oocyte by spermatozoa is believed to be mainly mediated by so called "fusion proteins". In the present study we have tried to demonstrate that beside the proteins, lipid components of membrane may play an important role in fusion of oocyte with spermatozoa. Conventional membrane-membrane fusion assays were used as means to demonstrate fusogenic potential of human sperm membrane lipids. The liposomes (spermatosomes) made of the lipids isolated from sperm membrane were found to undergo strong membrane-membrane fusion as evident from fluorescence dequenching and resonance energy transfer assays. Furthermore, the fusion of these liposomes with living cells (J774 A.1 macrophage cell line) was demonstrated to result in an effective transfer of a water-soluble fluorescent probe (calcein) to cytosol of the target cell. Lastly, the liposomes were demonstrated to behave like efficient vehicles for the in vivo cytosolic delivery of the antigens to target cells resulting in elicitation of antigen specific CD8(+) T cell responses.  相似文献   

2.
Ahmad N  Deeba F  Faisal SM  Khan A  Agrewala JN  Dwivedi V  Owais M 《Biochimie》2006,88(10):1391-1400
Earlier we have demonstrated that novel fusogenic liposomes made up of lipid from Escherichia coli (escheriosomes) have strong tendency to fuse with the plasma membrane of target cells and thereby delivering the entrapped contents into their cytosol. The delivery of entrapped antigen in cytosol of the target cells ensues its processing and presentation along with MHC class I pathway that eventually elicit antigen specific cytotoxic T cells. The result of the present study revealed that immunization of BALB/c mice with escheriosome-encapsulated Salmonella typhimurium (S. typhimurium) cytosolic antigens resulted in the augmentation of antigen specific cytotoxic T cell lymphocyte as well as IgG responses. In contrast, free or conventional liposome (PC liposome) encapsulated antigen failed to induce CD8+ CTLs in the immunized animals. Further, immunization with escheriosome-encapsulated antigen resulted in significant enhancement in the release of IFN-gamma and IgG2a in the experimental animals. Interestingly, the immunization with escheriosome-encapsulated antigen resulted in upregulation of CD80 and CD86 on the surface of antigen presenting cells (APCs) as well. Finally, the results of the present study reveal that immunization of animals with escheriosomes encapsulated antigen protected them against virulent S. typhimurium infection. This was evident by increased survival, and reduced bacterial burden in vital organs of the immunized animals. The data of the present study suggest that escheriosomes can emerge as an effective vehicle for intracellular delivery of antigen and thus hold promise in development of liposome based vaccine against Salmonella and other intracellular pathogens.  相似文献   

3.
Development of protective immunity against many pathogens, particularly viruses, requires fine orchestration of both humoral- and cell mediated-immunity. The immunization of animals with soluble antigens usually leads to the induction of humoral immune responses. In contrast, the activation of a cell-mediated immune response against exogenous antigens has always been a challenge, requiring special strategies to expose them to the proteasome, a multifunctional protease complex in the cytosol of the target cells. The degradation of the protein by the cytosolic proteolytic system forms a cardinal step for the induction of cytotoxic T lymphocytes (CTLs). In the present study, we report that a potent primary CTL response against a soluble protein, ovalbumin, can be induced in mice by encapsulating it in the liposomes comprised of Escherichia coli membrane lipids. These lipids were shown to induce strong membrane-membrane fusion as evident from resonance energy transfer and content mixing assays. Furthermore, the fusion of these liposomes with living cells (J774 A1) was demonstrated to result in effective transfer of a fluorescent lipid probe to the plasma membrane of the cells. Moreover, ricin A, a protein synthesis inhibitor that does not cross plasma membrane, was demonstrated to gain access to the cytosol when it was encapsulated in these liposomes. Finally, the liposomes were demonstrated to behave like efficient vehicles for the in vivo delivery of the antigens to the target cells resulting in the elicitation of antigen reactive CD8+ T cell responses.  相似文献   

4.
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen-presenting cells (APCs) to CD8+ T cells, and that this process resulted in the induction of antigen-specific cytotoxic T lymphocytes. In the present study, the mechanism by which the liposome-coupled antigens were cross-presented to CD8+ T cells by APCs was investigated. Confocal laser scanning microscopic analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-based liposomes received processing at both MHC class I and class II compartments, while most of the antigens coupled to the surface of saturated-fatty-acid-based liposomes received processing at the class II compartment. In addition, flow cytometric analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-liposomes were taken up by APCs even in a 4°C environment; this was not true of saturated-fatty-acid-liposomes. When two kinds of inhibitors, dimethylamiloride (DMA) and cytochalasin B, which inhibit pinocytosis and phagocytosis by APCs, respectively, were added to the culture of APCs prior to the antigen pulse, DMA but not cytochalasin B significantly reduced uptake of liposome-coupled antigens. Further analysis of intracellular trafficking of liposomal antigens using confocal laser scanning microscopy revealed that a portion of liposome-coupled antigens taken up by APCs were delivered to the lysosome compartment. In agreement with the reduction of antigen uptake by APCs, antigen presentation by APCs was significantly inhibited by DMA, and resulted in the reduction of IFN-γ production by antigen-specific CD8+ T cells. These results suggest that antigens coupled to the surface of liposomes consisting of unsaturated fatty acids might be pinocytosed by APCs, loaded onto the class I MHC processing pathway, and presented to CD8+ T cells. Thus, these liposome-coupled antigens are expected to be applicable for the development of vaccines that induce cellular immunity.  相似文献   

5.
It was recently demonstrated that the semiconserved domain of the V3 region of the HIV-1 surface glycoprotein gp120 can induce an activation-apoptosis phenomenon to memory CD4+ cells from healthy individuals. Studying the effects of V3 on the interaction of antigen presentation between monocyte-derived macrophages and resting memory CD4+ T cells, we observed that V3 affects both cell populations. Macrophages exposed to composite liposomes containing V3 on the surface and tetanus toxoid (TT) as the recall antigen entrapped in the aqueous phase (lipoV3/TT liposomes) were able to activate CD4+ T cells during primary stimulation, but not after restimulation nine days later. Unstimulated macrophages or macrophages exposed to soluble TT responded to second stimuli, lipoV3/TT liposomes, and soluble TT in activating CD4+ T cells. Soluble TT-activated CD4+ T cells could be restimulated by soluble TT but not by lipoV3/TT liposomes, whereas lipoV3/TT liposome-activated CD4+ T cells became unresponsive to a second stimulus. These results show that resting memory CD4+ cells activated by macrophages presenting the recall antigen together with V3 become unresponsive to restimulation.  相似文献   

6.
We have previously demonstrated that liposomes with differential lipid components display differential adjuvant effects when Ags are chemically coupled to their surfaces. In the present study, Ag presentation of liposome-coupled OVA was investigated in vitro, and it was found that OVA coupled to liposomes made using unsaturated fatty acid was presented to both CD4+ and CD8+ T cells, whereas OVA coupled to liposomes made using saturated fatty acid was presented only to CD4+ T cells. Confocal laser scanning microscopic analysis demonstrated that a portion of the OVA coupled to liposomes made using unsaturated, but not saturated fatty acid, received processing beyond the MHC class II compartment, suggesting that the degradation of OVA might occur in the cytosol, and that the peptides generated in this manner would be presented to CD8+ T cells via MHC class I. The ability to induce cross-presentation of an Ag coupled to liposomes consisting of unsaturated fatty acid was further confirmed by in vivo induction of CTL and by the induction of tumor eradication in mice; E.G7 tumors in mice that received combined inoculation with OVA(257-264)-liposome conjugates, CpG, and anti-IL-10 mAbs were completely eradicated. In those mice, the frequency of CD8+ T cells reactive with OVA(257-264) peptides in the context of H-2K(b) was significantly increased. These results suggested that, by choosing lipid components for liposomes, surface-coupled liposomal Ags might be applicable for the development of tumor vaccines to present tumor Ags to APCs and induce antitumor responses.  相似文献   

7.
The semi-conserved domain of V3 of HIV-1 was synthesised in a lipopeptide form to be presented on the surface of liposome particles. Composite liposomes were constructed with entrapped tetanus toxoid as a recall antigen (lipo-V3/TT liposomes) to study the influence of V3 on effector T cells of human normal peripheral lymphocyte populations. We demonstrated that lipo-V3/TT liposomes induce a V3-specific response characterised by an early, enhanced proliferation of effector CD4+ T cells, followed by a sharp apoptosis. The phenomenon required the presence of monocyte-derived macrophages and CD4+ T cells, but it was qualitatively and quantitatively distinct from the normal soluble antigen-mediated antigen presenting cell: T cell interaction. Presence of the beta-chemokine RANTES in the culture medium inhibited the phenomenon, suggesting that V3 plays a costimulatory role that involves the chemokine receptor CCR5 pathway during the process of antigen presentation to T cells. This observation may be very important if it occurs also in HIV-1 infection, as it may explain the selective and progressive depletion of non-infected effector CD4+ T cells.  相似文献   

8.
Lipids are important antigens that induce T cell-mediated specific immune responses. They are presented to T lymphocytes by a specific class of MHC-I like proteins, termed CD1. The majority of the described CD1-presented mycobacterial antigens are presented by the CD1b isoform. We previously demonstrated that the stimulation of CD1b-restricted T cells by the hexamannosylated phosphatidyl-myo-inositol (PIM(6)), a family of mycobacterial antigens, requires a prior partial digestion of the antigen oligomannoside moiety by α-mannosidase and that CD1e is an accessory protein absolutely required for the generation of the lipid immunogenic form. Here, we show that CD1e behaves as a lipid transfer protein influencing lipid immunoediting and membrane transfer of PIM lipids. CD1e selectively assists the α-mannosidase-dependent digestion of PIM(6) species according to their degree of acylation. Moreover, CD1e transfers only diacylated PIM from donor to acceptor liposomes and also from membranes to CD1b. This study provides new insight into the molecular mechanisms by which CD1e contributes to lipid immunoediting and CD1-restricted presentation to T cells.  相似文献   

9.
An emerging area of investigation is the role of lipids as immunological antigens. CD1 glycoproteins comprise a family of molecules that are specialized for presenting lipids, glycolipids and lipopeptides to T lymphocytes. Variations in the cytoplasmic tail sequences of CD1 isoforms lead to differential association with adaptor proteins and consequently divergent routes of intracellular trafficking, resulting in surveillance of distinct cellular sites for binding lipid antigens. CD1 molecules efficiently gain access to lipids from intracellular microbial pathogens in endosomal compartments, and the trafficking and lipid-binding specialization of CD1 isoforms may correlate with the endosomal segregation of structurally distinct lipids. Endosomal trafficking is also critical for CD1d molecules to load antigenic self-lipids that are presented to autoreactive CD1d-restricted natural killer (NK)T cells and is required for the positive selection of these unique T cells. Recent studies reveal a key role for accessory proteins that facilitate the uptake of lipid antigens by CD1 molecules. These include lysosomal lipid-transfer proteins, such as the saposins, and apolipoprotein E, the major serum factor that binds and delivers extracellular lipids to antigen-presenting cells. These advances in understanding the CD1 lipid antigen presentation system raise new considerations about the role of the immune response in lipid-related diseases.  相似文献   

10.
There is currently a need for vaccines that stimulate cell-mediated immunity-particularly that mediated by CD8+ cytotoxic T lymphocytes (CTLs)-against viral and tumor antigens. The optimal induction of cell-mediated immunity requires the presentation of antigens by specialized cells of the immune system called dendritic cells (DCs). DCs are unique in their ability to process exogenous antigens via the major histocompatibility complex (MHC) class I pathway as well as in their ability to activate naive, antigen-specific CD8+ and CD4+ T cells. Vaccine strategies that target or activate DCs in order to elicit potent CTL-mediated immunity are the subject of intense research. We report here that whole recombinant Saccharomyces cerevisiae yeast expressing tumor or HIV-1 antigens potently induced antigen-specific, CTL responses, including those mediating tumor protection, in vaccinated animals. Interactions between yeast and DCs led to DC maturation, IL-12 production and the efficient priming of MHC class I- and class II-restricted, antigen-specific T-cell responses. Yeast exerted a strong adjuvant effect, augmenting DC presentation of exogenous whole-protein antigen to MHC class I- and class II-restricted T cells. Recombinant yeast represent a novel vaccine strategy for the induction of broad-based cellular immune responses.  相似文献   

11.
For optimal stimulation of T cells, protein-based vaccines must deliver protein antigens to antigen-presenting cells while simultaneously providing immunostimulatory signals. Listeriolysin O (LLO)-containing liposomes have been utilized to efficiently deliver protein antigens to the cytosolic pathway for antigen processing and major histocompatibility complex class I-dependent presentation while codelivering immunostimulatory CpG-oligodeoxyribonuceotides (ODNs). In this report, we describe the synthesis of lipid-CpG-ODN conjugates utilizing maleimide-phosphatidylethanolamine (PE) lipids and 5'-sulfhdryl-containing CpG-ODNs as a method for facile incorporation of CpG-ODNs in liposomal vaccine carriers, an alternative to co-encapsulation inside liposomes and as a means to enhance delivery of CpG-ODNs to their major receptor, Toll-like receptor 9 (TLR9), in the endosome. The characterization and biological evaluation of the vaccine delivery system made of liposomes, which contain the lipid-CpG-ODN conjugates inserted in the liposomal membrane, is described. We demonstrate in vitro in bone marrow derived macrophages that the lipid-CpG-ODN conjugates incorporated onto the liposome bilayers interact with their receptor TLR9 as readily as liposome-encapsulated ODNs and exert their immunostimulatory capabilities. The liposomal vaccine delivery systems were evaluated in mice using ovalbumin (OVA) as a model antigen, and the results indicate equally robust OVA-specific cytotoxic T lymphocyte responses and similar Th1 immune skewing capabilities between liposomes containing lipid-conjugated or encapsulated CpG-ODNs. Overall, this work indicates that conjugating PE lipids and CpG-ODNs results in an efficient method that allows facile incorporation of CpG-ODNs into a liposome-based delivery platform while retaining the immune-stimulating capabilities of CpG-ODNs.  相似文献   

12.
There is general consensus that the use of whole viruses for the development of a vaccine against human immunodeficiency virus (HIV) would be unsafe. While currently available nonreplicating vaccines, composed of synthetic peptides or purified subunit antigens, can help in tricking the humoral immune responses, they fail to incite the other major arm of the immune defense system, i.e., cell mediated immunity (CMI). To overcome the difficulty in generating CMI, we have entrapped an immunodominant HIV envelope glycoprotein peptide in liposomes made up of fusogenic lipids isolated from Escherichia coli. We have established the role of fusogenic liposomes in stimulation of HIV-specific CD8+ cytotoxic T lymphocytes. Interestingly, the same liposomes elicit strong HIV-specific antibody production as well. Moreover, untoward manifestations such as skin damage or antibody production against lipid components were also not observed. Thus, E. coli lipid liposomes (escheriosomes) could prove to be a potent candidate vaccine, capable of eliciting both humoral and cell mediated immune responses against HIV infection.  相似文献   

13.
To develop a novel dendritic cell (DC)-based vaccine for inducing antigen-specific CD8+ T cell responses by cross-presentation, we tested a novel antigen delivery system that introduces soluble antigens into the cytosol of cells by an endocytosis-mediated mechanism which avoids damaging the plasma membrane (“Endo-Porter”™). Proteins released from endosomes into the cytoplasm are degraded by the proteasome, and fragmented antigenic peptides are presented to the classical cytosolic MHC class I pathway. DCs pulsed with OVA protein in the presence of Endo-Porter efficiently stimulate OVA peptide-specific CD8+ T (OT-I) cells. Although this agent diverts some of the endocytosed antigens away from the classical MHC class II-restricted presentation pathway to the class I pathway, the activation of CD4+ T cells was found not to be hampered by Endo-Porter-mediated antigen delivery. On the contrary, it was rather augmented, probably due to the increased uptake of antigen. Because specific CD4+ T cell help is required to license DCs for cross-priming, Endo-Porter-mediated antigen delivery is a promising approach for developing more efficient cancer vaccines targeting both CD4+ and CD8+ T cells.  相似文献   

14.
Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) represent an efficient fusogenic cellular delivery system. By interaction of HA with its natural receptors, sialylated lipids (gangliosides) or proteins, virosomes bind to cells and, following endocytic uptake, deliver their contents to the cytosol through fusion from within acidic endosomes. Here, we show that binding to sialic acid is not necessary for fusion. In the presence of streptavidin, virosomes containing a biotinylated lipid fused with liposomes lacking sialic acid if these liposomes also had a biotinylated lipid in their membranes. Moreover, fusion characteristics corresponded well with fusion of virosomes with ganglioside-containing liposomes.  相似文献   

15.
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.  相似文献   

16.
Intracellular bacteria such as Mycobacterium tuberculosis primarily infect macrophages. Within these host cells, the pathogens are confined to phagosomes and their antigens are secluded from the classical MHC I presentation pathway. Moreover, macrophages fail to express certain antigen presenting molecules like CD1 proteins. As a result of this intracellular lifestyle, the pathways for the induction of MHC I- and CD1-restricted CD8 T cells by such microorganisms remain elusive. Based on recent findings in tuberculosis and salmonellosis, we propose a new detour pathway for CD8 T cell activation against intracellular bacteria through apoptotic blebs from infected macrophages. Pathogen-derived antigens including proteins and lipids are delivered from infected cells to non-infected dendritic cells. Subsequently, these professional antigen presenting cells display microbial antigens through MHC I and CD1 to T cells. Thus, cross-priming mediated by apoptotic vesicles is not just a matter of antigen distribution, but an intrinsic immunological function due to the nature of phagosomally located intracellular bacteria. We consider infection-induced apoptosis the conditio sine qua non for antigen-specific CD8 T cell activation by phagosome-enclosed pathogens. This important new function of cell death in antibacterial immunity requires consideration for rational vaccine design.  相似文献   

17.
Sialoadhesin (Sn, Siglec-1, CD169) is a member of the sialic acid binding Ig-like lectin (siglec) family expressed on macrophages. Its macrophage specific expression makes it an attractive target for delivering antigens to tissue macrophages via Sn-mediated endocytosis. Here we describe a novel approach for delivering antigens to macrophages using liposomal nanoparticles displaying high affinity glycan ligands of Sn. The Sn-targeted liposomes selectively bind to and are internalized by Sn-expressing cells, and accumulate intracellularly over time. Our results show that ligand decorated liposomes are specific for Sn, since they are taken up by bone marrow derived macrophages that are derived from wild type but not Sn(-/-) mice. Importantly, the Sn-targeted liposomes dramatically enhance the delivery of antigens to macrophages for presentation to and proliferation of antigen-specific T cells. Together, these data provide insights into the potential of cell-specific targeting and delivery of antigens to intracellular organelles of macrophages using Sn-ligand decorated liposomal nanoparticles.  相似文献   

18.
BCR-ABL为慢性髓细胞白血病特异胞质抗原,为良好的免疫治疗靶标。该研究选择BCR-ABL融合位点的两段抗原肽SSKALQRPV(SS)、GFKQSSKAL(GF)为靶点,与胞质转导肽融合表达,负载小鼠骨髓源性树突状细胞。在胞质转导肽介导下,SS、GF短肽进入树突状细胞并定位于内质网,具备了被树突状细胞识别为内源性抗原并以MHC I类分子递呈的条件。在体外培养中,用致敏的树突状细胞刺激脾脏CD8+T淋巴细胞,获得针对CML的细胞毒性T淋巴细胞,同时检测该细胞毒性T淋巴细胞体外抗CML的效应。结果证实,胞质转导肽介导的GF抗原短肽负载的树突状细胞能够诱导CD8+T淋巴细胞增殖活化并产生针对CML的细胞毒性杀伤效应。因此,GF抗原肽有望作为CML免疫治疗的靶点。该研究为鉴定出靶向CML细胞的T淋巴细胞表面的特异TCR序列准备了条件,进而为后续制备靶向CML的TCR-T细胞奠定了基础。  相似文献   

19.
Giri PK  Schorey JS 《PloS one》2008,3(6):e2461
Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in na?ve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+) and CD8(+) splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+) and CD8(+) T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.  相似文献   

20.
Abstract

Introduction

Ever since the liposome has been proposed as an antigen carrier or vaccine adjuvant to enhance immune responses of various vaccines (1), a great deal of effort has been made to understand the physical and chemical properties of the liposome membranes that modulate the potency of liposomal adjuvants [for review, see (2)]. While no generally consistent conclusion can be drawn for all vaccine antigens, the role of lipid fluidity in liposome adjuvanticity has been investigated extensively. Kinsky (3) showed that trinitrophenyl (TNP)-sensitized liposomes composed primarily of gelphased lipids [defined by a gel-to-liquid phase-transition temperature (Tc) higher than 37°C] were more potent in eliciting B cell response. In this study, TNP is a lipid membrane-bound antigen. However, membrane fluidity does not appear to play a role in adjuvanticity with a water-soluble antigen. Six et al. (4) showed, using the water-soluble adenovirus type 5 hexon, that liposomes made of gel-phased lipids – distearoyl phosphatidylcholines (PC) (Tc = 57°C) and dipalmitoyl PC (Tc = 41 °C) - produced similar adjuvant effects in responders compared to liposomes made of liquid-phased lipids – dimyristoyl PC (Tc = 23°C) and dioleoyl PC (Tc = -22°C). Other experimental results regarding membrane fluidity and the adjuvanticity of various lipid compositions and protein antigens (5-8) yielded conflicting conclusions. These inconsistent results may have arisen from the differences in the studied protein antigen and from the unique interaction between the antigen and lipid membrane. Overall, liposome adjuvant studies to date have concentrated on the role of the physical characteristics of liposome membranes in potentiating immune interactions and paid limited attention to the physiological constraint and immune recognition and interaction at the cellular and molecular levels. With the recent advances in our understanding of the cellular and molecular mechanisms of immune regulation, one can now rationally design strategies to deliver antigen and cytokines to selective sites or cells involved in immune potentiation. In the following sections, we will present our observations about such strategies for the delivery of antigens with antigen-presenting liposomes (APLs) targeted to macrophages and the use of liposomes to deliver cytokines for the enhancement of antigen-dependent T and B cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号