首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags.  相似文献   

3.
Protective immunity against Mycobacterium tuberculosis involves major histocompatibility complex class I (MHC-I)- and CD1-restricted CD8 T cells, but the mechanisms underlying antigen delivery to antigen-presenting molecules remain enigmatic. Macrophages, the primary host cells for mycobacteria, are CD1-negative. Here we show that M. tuberculosis phagosomes are secluded from the cytosolic MHC-I processing pathway and that mycobacteria-infected cells lose their antigen-presenting capacity. We also show that mycobacteria induce apoptosis in macrophages, causing the release of apoptotic vesicles that carry mycobacterial antigens to uninfected antigen-presenting cells (APCs). Inhibition of apoptosis reduced transfer of antigens to bystander cells and activation of CD8 T cells. Uninfected dendritic cells, which engulfed extracellular vesicles, were indispensable for subsequent cross-presentation of antigens, through MHC-I and CD1b, to T cells from mycobacteria-sensitized donors. This new 'detour' pathway for presentation of antigens from a phagosome-contained pathogen shows the functional significance of infection-induced apoptosis in the activation of CD8 T cells specific for both protein and glycolipid antigens in tuberculosis.  相似文献   

4.
The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d   总被引:5,自引:0,他引:5  
The CD1 family of proteins presents lipid Ags to T cells. Human CD1a, CD1b, and CD1c have been shown in humans to present mycobacterial lipid Ags. Cattle, like humans, are a natural host of several mycobacterial pathogens. In this study, we describe the CD1 family of genes in cattle (Bos taurus) and provide evidence that B. taurus expresses CD1a, CD1e, and multiple CD1b molecules, but no CD1c and CD1d molecules. In mice and humans, CD1d is known to present Ag to NKT cells, a T cell lineage that is characterized by a limited TCR repertoire, capable of rapidly secreting large amounts of IFN-gamma and IL-4. In cattle, two CD1D pseudogenes were found and no intact CD1D genes. Consistent with this, we found complete lack of reactivity to a potent, cross-reactive Ag for NKT cells in mice and humans, alpha-galactosylceramide. Our data suggest the absence of NKT cells in cattle. It remains open whether other cells with the NKT-like phenotype and functions are present in this species. With its functional CD1A and CD1B genes, B. taurus is well equipped to present Ags to CD1-restricted T cells other than NKT cells. Cattle can be used as a model to study group 1 CD1-restricted T cell immunity, including its role in the defense against mycobacterial infections that occur naturally in this species.  相似文献   

5.
6.
Group 1 CD1 molecules have been shown to present lipid and glycolipid Ags of mycobacteria to human T cells. However, a suitable animal model for the investigation of this component of antimycobacterial immunity has not yet been established. Previously, we found that guinea pigs express multiple isoforms of group 1 CD1 proteins that are homologous to human CD1b and CD1c. In this study, we show that CD1-restricted T cell responses can be generated in guinea pigs following immunization with lipid Ags from Mycobacterium tuberculosis. Splenic T cells from lipid Ag-immunized guinea pigs showed strong proliferative responses to total lipid Ags and partially purified glycolipid fractions from M. tuberculosis. These lipid Ag-reactive T cells were enriched in CD4-negative T cell fractions and showed cytotoxic activity against CD1-expressing guinea pig bone marrow-derived dendritic cells pulsed with M. tuberculosis lipid Ags. Using guinea pig cell lines transfected with individual CD1 isoforms as target cells in cytotoxic T cell assays, we found that guinea pig CD1b and CD1c molecules presented M. tuberculosis glycolipid Ags to T cells raised by mycobacterial lipid immunization. These results were confirmed using a T cell line derived from M. tuberculosis lipid Ag-immunized guinea pigs, which also showed CD1-restricted responses and cytolytic activity. Our results demonstrate that CD1-restricted responses against microbial glycolipid Ags can be generated in vivo by specific immunization and provide support for the use of the guinea pig as a relevant small animal model for the study of CD1-restricted immune responses to mycobacterial pathogens.  相似文献   

7.
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire. [BMB Reports 2014; 47(5): 241-248]  相似文献   

8.
Murine Valpha14(inv)T cells (NKT cells), restricted by the CD1d1 MHC 1b molecules, are a distinctive subset of T cells endowed with pleiotropic functions. CD1d1-restricted NKT cells infiltrate the granulomas induced by the s.c. injection of mycobacterial phosphatidylinositoldimannoside (PIM(2)) but not of its deacylated derivative. NKT cells are detectable as early as 6 hours following the injection. Although the molecular structure of PIM(2) meets the requirements for presentation by CD1d1, Ab blocking and adoptive transfer experiments of wild-type NKT cells into CD1d1(-/-) mice show that CD1d1 expression is not required for the early recruitment of NKT cells to the injection site. This conclusion was confirmed by the finding that IL-12Rbeta(-/-) and CD40(-/-) mice were able to recruit NKT cells after PIM(2) challenge. Moreover, the injection of alpha-galactosylceramide, an NKT cell ligand that is recognized in the context of CD1d1, promoted only a minor recruitment of NKT cells. By contrast, injection of beta-galactosylceramide, a synthetic glycolipid that binds to CD1d1 but does not activate the CD1d/TCR pathway, resulted in the development of large granulomas rich in NKT cells. Finally, local injection of TNF-alpha mimics the effect of glycolipids. It is concluded that NKT cells migrate to and accumulate at inflammatory sites in the same way as other cells of the innate immune system and that migration to and accumulation at inflammatory sites are processes independent of the CD1d1 molecule.  相似文献   

9.
Whereas proteolytic cleavage is crucial for peptide presentation by classical major histocompatibility complex (MHC) proteins to T cells, glycolipids presented by CD1 molecules are typically presented in an unmodified form. However, the mycobacterial lipid antigen mannosyl-β1-phosphomycoketide (MPM) may be processed through hydrolysis in antigen presenting cells, forming mannose and phosphomycoketide (PM). To further test the hypothesis that some lipid antigens are processed, and to generate antigens that lead to defined epitopes for future tuberculosis vaccines or diagnostic tests, we aimed to create hydrolysis-resistant MPM variants that retain their antigenicity. Here, we designed and tested three different, versatile synthetic strategies to chemically stabilize MPM analogs. Crystallographic studies of CD1c complexes with these three new MPM analogs showed anchoring of the lipid tail and phosphate group that is highly comparable to nature-identical MPM, with considerable conformational flexibility for the mannose head group. MPM-3, a difluoromethylene-modified version of MPM that is resistant to hydrolysis, showed altered recognition by cells, but not by CD1c proteins, supporting the cellular antigen processing hypothesis. Furthermore, the synthetic analogs elicited T cell responses that were cross-reactive with nature-identical MPM, fulfilling important requirements for future clinical use.  相似文献   

10.
Group 1 and group 2 CD1 present both self and microbial lipid antigens to T cells. While group 1 CD1-restricted T cells are known for their ability to recognize mycobacterial glycolipid antigens, group 2 CD1-restricted T cells are recognized as regulatory T cells that can influence the outcome of innate and adaptive immune responses. The evidence that these T cells contribute to host defense against infectious diseases is reviewed.  相似文献   

11.
The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids.  相似文献   

12.
Disease recurrence following chemotherapy and allogeneic hematopoietic cell transplantation is the major unmet clinical need of acute leukemia. Adoptive cell therapy (ACT) with allogeneic T lymphocytes can control recurrences at the cost of inducing detrimental GVHD. Targeting T cell recognition on leukemia cells is therefore needed to overcome the problem and ensure safe and durable disease remission. In this review, we discuss adoptive cells therapy based on CD1-restricted T cells specific for tumor associated self-lipid antigens. CD1 molecules are identical in every individual and expressed essentially on mature hematopoietic cells and leukemia blasts, but not by parenchymatous cells, while lipid antigens are enriched in malignant cells and unlike to mutate upon immune-mediated selective pressure. Redirecting T cells against self-lipids presented by CD1 molecules can thus provide an appealing cell therapy strategy for acute leukemia that is patient-unrestricted and can minimize risks for GVHD, implying potential prognostic improvement for this cancer.  相似文献   

13.
Young DC  Moody DB 《Glycobiology》2006,16(7):103R-112R
The most well-known molecular paradigm of antigen recognition by T cells involves partial digestion of proteins to generate small peptides, which bind to major histocompatibility complex (MHC) proteins. Recent studies of CD1, an MHC class I homolog encoded outside the MHC, have revealed that it presents diverse glycolipids to T cells. The molecular mechanism for lipid antigen recognition involves insertion of the lipid portion of antigens into a hydrophobic groove to form CD1-lipid complexes, which contact T-cell receptors (TCRs). Here, we examine the known antigen structures presented by CD1, the majority of which have sugar moieties that are capable of interacting with TCRs. Recognition of carbohydrate epitopes is precise, and lipid-reactive T cells alter systemic immune responses in models of infectious and autoimmune disease. These findings provide a previously unrecognized mechanism by which the cellular immune system can recognize alterations in many types of carbohydrate structures.  相似文献   

14.
CD1 proteins mediate the presentation of endogenous and foreign lipids on the cell surface for recognition by T cell receptors. To sample a diverse antigen pool, CD1 proteins are repeatedly internalized and recycled, assisted, in some cases, by lipid transfer proteins such as saposins. The specificity of each CD1 isoform is, therefore, conferred in part by its intracellular pathway but also by distinct structural features of the antigen-binding domain. Crystal structures of CD1-lipid complexes reveal hydrophobic grooves and pockets within these binding domains that appear to be specialized for different lipids. However, the mechanism of lipid loading and release remains to be characterized. Here we gain insights into this mechanism through a meta-analysis of the five human CD1 isoforms, in the lipid-bound and lipid-free states, using all-atom molecular dynamics simulations. Strikingly, for isoforms CD1b through CD1e, our simulations show the near-complete collapse of the hydrophobic cavities in the absence of the antigen. This event results from the spontaneous closure of the binding domain entrance, flanked by two α-helices. Accordingly, we show that the anatomy of the binding cavities is restored if these α-helices are repositioned extrinsically, suggesting that helper proteins encountered during recycling facilitate lipid exchange allosterically. By contrast, we show that the binding cavity of CD1a is largely preserved in the unliganded state because of persistent electrostatic interactions that keep the portal α-helices at a constant separation. The robustness of this binding groove is consistent with the observation that lipid exchange in CD1a is not dependent on cellular internalization.  相似文献   

15.
Human CD1 proteins present lipid and glycolipid Ags to T cells. Cellular trafficking patterns of CD1 proteins may determine the ability of differing isoforms of CD1 to acquire, bind, and present these Ags to T cells. To test this hypothesis, glycosyl-phosphatidylinositol (GPI)-modified variants of CD1b and CD1c were engineered by chimerization with a GPI modification signal sequence derived from decay-accelerating factor (DAF). GPI reanchoring was confirmed by demonstrating the phosphatidylinositol-specific phospholipase C sensitivity of the CD1b. DAF and CD1c. DAF fusion proteins expressed on transfectant cell surfaces. Using cytotoxicity and cytokine release assays as functional readouts, we demonstrated that CD1c. DAF is as efficient as native CD1c in presenting mycobacterial Ags to the human CD1c-restricted T cell line CD8-1. In contrast, CD1b. DAF, although also capable of presenting Ag (in this case to the CD1b-restricted T cell line LDN5), was less efficient than its native CD1b counterpart. The data support the idea that CD1c. DAF maintains the capacity to access CD1c Ag-loading compartment(s), whereas CD1b. DAF is diverted by its GPI anchor away from the optimal CD1b Ag-loading compartment(s). This constitutes the first GPI reanchoring of CD1 proteins and provides evidence that CD1b and CD1c have nonoverlapping Ag-presenting pathways, suggesting that these two Ag-presenting molecules may have distinct roles in lipid Ag presentation.  相似文献   

16.
Cellular CD1 proteins bind lipids that differ in length (C(12-80)), including antigens that exceed the capacity of the CD1 groove. This could be accomplished by trimming lipids to a uniform length before loading or by inserting each lipid so that it penetrates the groove to a varying extent. New assays to detect antigen fragments generated within human dendritic cells showed that bacterial antigens remained intact, even after delivery to lysosomes, where control lipids were cleaved. Further, recombinant CD1b proteins could bind and present C(80) lipid antigens using a mechanism that did not involve cellular enzymes or lipid cleavage, but was regulated by pH in the physiologic range. We conclude that endosomal acidification acts directly, rather than through enzymatic trimming, to insert lipids into CD1b. Lipids are loaded in an intact form, so that they likely protrude through a portal near the bottom of the groove, which represents an escape hatch for long lipids from mycobacterial pathogens.  相似文献   

17.
Mycobacterial phosphatidylinositol tetramannosides (PIM4) are agonists for a distinct population of invariant human (Valpha24) and mouse (Valpha14) NKT cells, when presented by CD1d. We determined the crystal structure at 2.6-A resolution of mouse CD1d bound to a synthetic dipalmitoyl-PIM2. Natural PIM2, which differs in its fatty acid composition is a biosynthetic precursor of PIM4, PIM6, lipomannan, and lipoarabinomannan. The PIM2 headgroup (inositol-dimannoside) is the most complex to date among all the crystallized CD1d ligands and is remarkably ordered in the CD1d binding groove. A specific hydrogen-bonding network between PIM2 and CD1d orients the headgroup in the center of the binding groove and above the A' pocket. A central cluster of hydrophilic CD1d residues (Asp(153), Thr(156), Ser(76), Arg(79)) interacts with the phosphate, inositol, and alpha1-alpha6-linked mannose of the headgroup, whereas additional specificity for the alpha1- and alpha2-linked mannose is conferred by Thr(159). The additional two mannoses in PIM4, relative to PIM2, are located at the distal 6' carbon of the alpha1-alpha6-linked mannose and would project away from the CD1d binding groove for interaction with the TCR. Compared with other CD1d-sphingolipid structures, PIM2 has an increased number of polar interactions between its headgroup and CD1, but reduced specificity for the diacylglycerol backbone. Thus, novel NKT cell agonists can be designed that focus on substitutions of the headgroup rather than on reducing lipid chain length, as in OCH and PBS-25, two potent variants of the highly stimulatory invariant NKT cell agonist alpha-galactosylceramide.  相似文献   

18.
19.
De Libero G  Mori L 《FEBS letters》2006,580(23):5580-5587
Recognition of lipid antigens by T lymphocytes is well established. Lipids are recognized by T cells when presented in association with CD1 antigen-presenting molecules. Both microbial and self lipids stimulate specific T lymphocytes, thus participating in immune reactions during infections and autoimmune diseases. The immune system uses a variety of strategies to solubilise lipid antigens, to facilitate their internalization, processing, and loading on CD1 molecules. Recent studies in the field of lipid antigen presentation have revealed new mechanisms which allow the immune system to sense lipids as stimulatory antigens.  相似文献   

20.
CD1 proteins are unique in their ability to present lipid Ags to T cells. Human CD1b shares significant amino acid homology with mouse CD1d1, which contains an unusual putative Ag-binding groove formed by two large hydrophobic pockets, A' and F'. We investigated the function of the amino acid residues that line the A' and F' pockets of CD1b by engineering 36 alanine-substitution mutants and analyzing their ability to present mycobacterial glycolipid Ags. Two lipid Ags presented by CD1b were studied, a naturally occurring glucose monomycolate (GMM) isolated from mycobacteria, which contains two long alkyl chains (C54-C62 and C22-C24) and synthetic GMM (sGMM), which includes two short alkyl chains (C18 and C14). We identified eight residues in both the A' and F' pockets that were involved in the presentation of both GMM and sGMM to T cells. Interestingly, four additional residues located in the distal portion of the A' pocket were required for the optimal presentation of GMM, but not sGMM. Conversely, nine residues located between the center of the groove and the F' pocket were necessary for the optimal presentation of sGMM, but not GMM. These data indicate that both the A' and F' pockets of human CD1b are required for the presentation of lipid Ags to T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号