首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Tachyzoites of Toxoplasma gondii were located inside the nucleus of both skeletal muscle cells infected in vitro and peritoneal exudate cells collected from infected mouse in vivo. Ultrastructural analysis demonstrated that T. gondii invades the nucleus of host cells by the parasite apical region and with constriction of its body. We noted that the rhoptry, a secretory organelle of the parasite that is involved in the host cell invasion mechanism, was empty in the intranuclear T. gondii. The parasites were found in the nuclear matrix without evidence of the vacuolar membrane. Frequently, new parasites invaded host cell nucleus, which was already infected. The significance of this nuclear invasion could reflect an alternative route of T. gondii for its transitory survival or an escape mechanism from the host immune response during the in vivo infection (or both).  相似文献   

2.
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.  相似文献   

3.
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.  相似文献   

4.
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocyte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containing vacuoles.  相似文献   

5.
To define the role of NF-kappa B in the development of T cell responses required for resistance to Toxoplasma gondii, mice in which T cells are transgenic for a degradation-resistant (Delta N) form of I kappa B alpha, an inhibitor of NF-kappa B, were challenged with T. gondii and their response to infection compared with control mice. I kappa B alpha(Delta N)-transgenic (Tg) mice succumbed to T. gondii infection between days 12 and 35, and death was associated with an increased parasite burden compared with wild-type (Wt) controls. Analysis of the responses of infected mice revealed that IL-12 responses were comparable between strains, but Tg mice had a marked reduction in systemic levels of IFN-gamma, the major mediator of resistance to T. gondii. In addition, the infection-induced increase in NK cell activity observed in Wt mice was absent from Tg mice and this correlated with NK cell expression of the transgene. Infection-induced activation of CD4(+) T cells was similar in Wt and Tg mice, but expansion of activated CD4(+)T cells was markedly reduced in the Tg mice. This difference in T cell numbers correlated with a reduced capacity of these cells to proliferate after stimulation and was associated with a major defect in the ability of CD4(+) T cells from infected mice to produce IFN-gamma. Together, these studies reveal that inhibition of NF-kappa B activity in T and NK cells results in defective effector cell expansion and production of IFN-gamma required for resistance to T. gondii.  相似文献   

6.
Serial, in vitro passage of Toxoplasma gondii (Rh strain) was successfully performed in a cell line derived from ovine fetal kidney cells. Invasion of this parasite into the kidney cells was easily discernible 1 hr after inoculation. The subsequent proliferation of the parasite was followed in the cytoplasm of the kidney cells. Very active endodyogeny and rosette formations, as many as 13 in a cell, were observed in the cytoplasm of the kidney cells 48 hr postinoculation. After 96 hr of incubation, the parasite population had increased about 132-fold. The virulence of T. gondii against mice was not attenuated after 2 years of in vitro growth which represented 100 serial passages through the kidney cell cultures. Although no "exotoxin" was produced by T. gondii grown in vitro, a Toxoplasma sp. agar gel immunodiffusion test antigen was isolated from the cell-free supernatant fluid of the kidney cell cultures which was identical to an antigen isolated from "toxogenic" organisms harvested from infected mice.  相似文献   

7.
Serum from mouse orally ingested with tissue cyst forming strain (Me49) of Toxoplasma gondii was assayed by Western blot and immunofluorescene assay (IFA) to establish early responses in antigenicity of the parasite in mouse model of foodborne toxoplasmosis. Sera were collected weekly to blot the RH antigen transferred onto nitrocellulose paper after being separated by 12% SDS-PAGE. With the second week serum, 34 kDa protein (p34) was detected uniquely, and all antigens of T. gondii were detected with the sera from 3 or 4 weeks. p34 was not a member of the major surface membrane proteins and confirmed to be localized in the rhoptry by IFA. It was secreted into parasitophorous vacuolar membrane (PVM) during the entry into host cells. When applied to the human sera of which the ELISA absorbance was in negative range, 10.3% of sera detected p34, while all the ELISA positive sera detected the band. It has diagnostic usefulness of presumed T. gondii infection. We suggest the name of the p34 protein as ROP9.  相似文献   

8.
Toxoplasma gondii and mucosal immunity   总被引:34,自引:0,他引:34  
Toxoplasma gondii, an intracellular parasite infects the host through the oral route. Infection induces a cascade of immunological events that involve both the components of the innate and adaptative immune responses. Alteration of the homeostatic balance of infected intestine results in an acute inflammatory ileitis in certain strains of inbred mice. Both the infected enterocytes as well as the CD4 T cells from the lamina propria produce chemokines and cytokines that are necessary to clear the parasite whereas CD8 intraepithelial lymphocytes secrete transforming growth factor beta that reduces the inflammation. In this review, we describe the salient features of this complex network of interactions among the different components of the gut-associated lymphoid tissue cell population that are induced after oral infection with T. gondii.  相似文献   

9.
Toxoplasma gondii resists endocytic processing within host cell phagosomes that are modified by a prominent membranous network which forms the interface between host cell and the enclosed parasite. The formation of this intravacuolar network involves redistribution of the major outer membrane proteins of the Toxoplasma cell, consisting of 41, 35, 29, 22 kDa species, as shown by radioimmunoprecipitation, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and immunogold EM labeling using monoclonal antibodies (mAbs) to T. gondii. In addition, the major 32 kDa protein found in the purified intravacuolar networks was recognized by mAb 1G5 which does not react with the surface of intact Toxoplasma cells. Immunoperoxidase EM using mAb 1G5 indicated that the 32 kDa protein is a constituent of electron-dense vacuoles within the Toxoplasma cell, in addition to being a prominent component of the intravacuolar network. Thus, assembly of the intravacuolar network appears to involve regulated release of the 32 kDa protein in conjunction with shedding of surface membrane proteins by the parasite. Our results suggest that the structural modifications of host cell phagosomes by T. gondii are precisely regulated events that follow invasion and consequently may contribute to intracellular survival.  相似文献   

10.
Analysis of major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) capable of killing human immunodeficiency virus type 1 (HIV-1)-infected targets is essential for elucidating the basis for HIV-1 disease progression and the potential efficacy of candidate vaccines. The use of primary CD4+ T cells with variable infectivity as targets for such studies has significant limitations, and immortal autologous cells with high levels of CD4 expression that can be consistently infected with HIV-1 would be of much greater utility. Therefore, we transduced Epstein-Barr-virus-transformed B-lymphoblastoid cell lines (LCL) with a retroviral vector, LT4SN, containing the human CD4 gene. Stable LCL in which more than 95% of cells expressed membrane CD4 were obtained. Aliquots were infected with HIV-1, and, after 4 to 7 days, nearly all of the cells contained cytoplasmic gag and produced high levels of p24 antigen. The ability of major histocompatibility complex-restricted CD8+ CTL to lyse such HIV-1-infected CD4-transduced LCL (LCL-CD4HIV-1) was evaluated. These autologous targets were lysed by CTL generated from an HIV-1-uninfected vaccinee over a broad range of effector-to-target ratios. Similarly, the LCL-CD4HIV-1 were efficiently lysed by fresh circulating CTL from HIV-1-infected individuals, as well as by CTL activated by in vitro stimulation. Both HIV-1 env- and gag-specific CTL effectors lysed LCL-CD4HIV-1, consistent with the cellular expression of both HIV-1 genes. The LCL-CD4HIV also functioned as stimulator cells, and thus are capable of amplifying CTL against multiple HIV-1 gene products in HIV-1-infected individuals. The ability to produce HIV-1-susceptible autologous immortalized cell lines that can be employed as target cells should enable a more detailed evaluation of vaccine-induced CTL against both homologous and disparate HIV-1 strains. Furthermore, the use of LCL-CD4HIV-1 should facilitate the analysis of the range of HIV-1 gene products recognized by CTL in seropositive persons.  相似文献   

11.
Toxoplasma gondii is an important zoonotic parasite with a worldwide distribution. It infects about one-third of the world's population, causing serious illness in immunosuppressed individuals, fetuses, and infants. Toxoplasma gondii biology within the host cell includes several important phases: (1) active invasion and establishment of a nonfusogenic parasitophorous vacuole in the host cell, (2) extensive modification of the parasitophorous vacuolar membrane for nutrient acquisition, (3) intracellular proliferation by endodyogeny, (4) egress and invasion of new host cells, and (5) stage conversion from tachyzoite to bradyzoite and establishment of chronic infection. During these processes, T. gondii regulates the host cell by modulating morphological, physiological, immunological, genetic, and cellular biological aspects of the host cell. Overall, the infection/development predispositions of T. gondii -host cell interactions overtakes the infection resistance aspects. Upon invasion and development, host cells are modulated to keep a delicate balance between facilitating and eliminating the infection.  相似文献   

12.
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.  相似文献   

13.
Toxoplasma gondii forms different life stages, fast-replicating tachyzoites and slow-growing bradyzoites, in mammalian hosts. CD8 T cells are of crucial importance in toxoplasmosis, but it is unknown which parasite stage is recognized by CD8 T cells. To analyze stage-specific CD8 T cell responses, we generated various recombinant Toxoplasma gondii expressing the heterologous Ag beta-galactosidase (beta-gal) and studied whether 1) secreted or cytoplasmic Ags and 2) tachyzoites or bradyzoites, which persist intracerebrally, induce CD8 T cells. We monitored the frequencies and kinetics of beta-gal-specific CD8 T cells in infected mice by MHC class I tetramer staining. Upon oral infection of B6C (H-2(bxd)) mice, only beta-gal-secreting tachyzoites induced beta-gal-specific CD8 T cells. However, upon secondary infection of mice that had received a primary infection with tachyzoites secreting beta-gal, beta-gal-secreting tachyzoites and bradyzoites transiently increased the frequency of intracerebral beta-gal-specific CD8 T cells. Frequencies of splenic and cerebral beta-gal-specific CD8 T cells peaked at day 23 after infection, thereafter persisting at high levels in the brain but declining in the spleen. Splenic and cerebral beta-gal-specific CD8 T cells produced IFN-gamma and were cytolytic upon specific restimulation. Thus, compartmentalization and stage specificity of an Ag determine the induction of CD8 T cells in toxoplasmosis.  相似文献   

14.
In two-dimensionally separated Toxoplasma gondii lysate, mouse Th1 clone 3Tx15 detects two proteins of apparent molecular weight 40000 and pI of 5.8 and 5.9. Microsequencing of peptide fragments from tryptic digestion of one of these proteins yielded partial sequences of T. gondii lactate dehydrogenase (LDH)1. As shown by Western blot, toxoplasmic LDH co-migrates in two-dimensional gel electrophoresis with both T-cell antigenic proteins. With synthetic peptides spanning the complete primary structure of T. gondii LDH1, the T-cell epitope was mapped to a nine amino acid partial sequence which exhibits a motif for binding to I-E(k), the class II restriction element of antigen recognition by clone 3Tx15. From the two known isoforms of T. gondii LDH, clone 3Tx15 specifically recognises tachyzoite LDH1, but not bradyzoite LDH2, as shown with the corresponding epitope peptides and recombinant proteins. Antigen-presenting cells infected with live bradyzoites stimulate 3Tx15 T cells, while killed bradyzoites provide no antigenic stimulus. This finding implies that a transformation into the tachyzoite stage occurs in cells challenged with bradyzoites. Although LDH1 represents one major constituent of the tachyzoite proteome, the protein does not seem to be immunogenic in T. gondii infection of mice. This is evident from the lack of serum anti-LDH immunoreactivity and the failure of adoptively transferred 3Tx15 T cells to protect against lethal challenge. In conclusion, a T-cell-stimulatory Toxoplasma antigen is identified by means of a novel, high-resolution T-cell blot technique, the clones antigenic fine specificity allowing detection of parasite-stage conversion.  相似文献   

15.
Neutrophils, dendritic cells and Toxoplasma   总被引:7,自引:0,他引:7  
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.  相似文献   

16.
The importance of CD8+ T cells in immunity against Toxoplasma gondii is now well recognized. The mechanism by which these CD8+ T cells are able to confer this immunity is not yet understood. To examine the Ag specificity of this response, immune splenocytes from mice immunized with p30, a major surface parasite Ag, were evaluated for their ability to lyse peritoneal macrophages infected with three different strains of T. gondii. Macrophages infected with either the RH or P wild-type strain tachyzoites were lysed at varying E:T ratios by nylon wool nonadherent immune splenocytes whereas macrophages infected with a p30-deficient mutant (B mutant) of the P strain were not. The gene encoding p30 for the wild type and B mutant were amplified by the polymerase chain reaction. This revealed a nonsense mutation in the B mutant such that its primary translation product is predicted to be about two-thirds the size of the wild-type p30 molecule. mAb depletion studies indicate that the cytotoxic effect of the immune splenocytes is mediated by the CD8+ T cell population. Peritoneal macrophages infected with the three different strains (RH, P wild type, B mutant) from mice genetically restricted were not lysed by the immune CD8+ effector cell population. A cloned line (C3) of p30 Ag-specific CD8+ T cells exhibited significant cytotoxicity against syngeneic peritoneal macrophages infected with either the RH or P strain tachyzoites. There was no macrophage lysis observed by these CD8+ effector cells of either syngeneic macrophages infected with the B mutant or nonsyngeneic macrophages infected with the three different tachyzoite strains.  相似文献   

17.
Vero cells have been used successfully in Toxoplasma gondii maintenance. Medium supplementation for culture cells with fetal bovine serum is necessary for cellular growth. However, serum in these cultures presents disadvantages, such as the potential to induce hypersensitivity, variability of serum batches, possible presence of contaminants, and the high cost of good quality serum. Culture media formulated without any animal derived components, designed for serum-free growth of cell lines have been used successfully for different virus replication. The advantages of protozoan parasite growth in cell line cultures using serum-free medium remain poorly studied. Thus, this study was designed to determine whether T. gondii tachyzoites grown in Vero cell cultures in serum-free medium, after many passages, are able to maintain the same antigenic proprieties as those maintained in experimental mice. The standardization of Vero cell culture in serum-free medium for in vitro T. gondii tachyzoite production was performed establishing the optimal initial cell concentration for the confluent monolayer formation, which was 1×10(6) Vero cell culture as initial inoculum. The total confluent monolayer formatted after 96 h and the best amount of harvested tachyzoites was 2.1×10(7) using parasite inoculum of 1.5×10(6) after 7 days post-infection. The infectivity of tachyzoites released from Vero cells maintained in serum-free medium was evaluated using groups of Swiss mice infected with cell-culture tachyzoites. The parasite concentrations were similar to those for mice infected with tachyzoites collected from other infected mice. The data from both in vivo and in vitro experiments showed that in at least 30 culture cell passages, the parasites maintained the same infectivity as maintained in vivo. Another question was to know whether in the several continued passages, immunogenic progressive loss could occur. The nucleotide sequences studied were the same between the different passages, which could mean no change in their viability in the lysate antigen. Thus, the antigen production by cell culture has clear ethical and cost-saving advantages. Moreover, the use of culture media formulated without any human or animal derived components, designed for serum-free growth of cell lines, successfully produced tachyzoites especially for antigen production.  相似文献   

18.
We studied how the interaction between human dendritic cells (DC) and Toxoplasma gondii influences the generation of cell-mediated immunity against the parasite. We demonstrate that viable, but not killed, tachyzoites of T. gondii altered the phenotype of immature DC. DC infected with viable parasites up-regulated the expression of CD40, CD80, CD86, and HLA-DR and down-regulated expression of CD115. These changes are indicative of DC activation induced by T. gondii. Viable and killed tachyzoites had contrasting effects on cytokine production. DC infected with viable T. gondii rather than DC that phagocytosed killed parasites induced secretion of high amounts of IFN-gamma by T cells from T. gondii-seronegative donors. IFN-gamma production in response to DC infected with viable parasites required CD28 and CD40 ligand (CD40L) signaling. In addition, this IFN-gamma response was dependent in part on IL-12 secretion. Production of IL-12 p70 occurred after interaction between T cells and DC infected with viable T. gondii, but not after incubation of T cells with DC plus killed tachyzoites. IL-12 synthesis was inhibited by blockade of CD40L signaling. IL-12-independent IFN-gamma production required CD80/CD86-CD28 interaction and, to a lesser extent, CD40-CD40L signaling. Taken together, T. gondii-induced activation of human DC is associated with T cell production of IFN-gamma through CD40-CD40L-dependent release of IL-12 and through CD80/CD86-CD28 and CD40-CD40L signaling that mediate IFN-gamma secretion even in the absence of bioactive IL-12.  相似文献   

19.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

20.
The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na(+)/H(+) exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca(2+) concentration [Ca(2+)](i), and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号