首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

2.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

3.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

5.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

6.
The back-extraction of proteins encapsulated in AOT reverse micelles was performed by adding a counterionic surfactant, either TOMAC or DTAB. This novel backward transfer method gave higher backward extraction yields compared to the conventional method with high salt and high pH of the aqueous stripping solution. The protein activity was maintained in the resulting aqueous phase, which in this case had a near neutral pH and low salt concentration. A sharp decrease of the water content was observed in the organic phase corresponding to protein back-extraction using TOMAC. The backward transfer mechanism was postulated to be caused by electrostatic interaction between oppositely charged surfactant molecules, which lead to the collapse of the reverse micelles. The back-extraction process with TOMAC was found to be very fast; more than 100 times faster than back-extraction with the conventional method, and as much as 3 times faster than forward extraction. The formation of 1:1 complexes of AOT and TOMAC in the solvent phase was observed, and these hydrophobic complexes could be efficiently removed from the solvent using adsorption onto Montmorillonite in order for the organic solvent to be reused. A second cationic surfactant, DTAB, confirmed the general applicability of counterionic surfactants for the backward transfer of proteins.  相似文献   

7.
Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid–liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2‐ethyl‐hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij‐30, Tween‐85, Span‐85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij‐30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween‐85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40–45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
Dioctyldimethyl ammonium chloride (DODMAC) was used to form reverse micelles and to extract lysozyme from an aqueous solution into an organic phase. The solubilization behavior of lysozyme into a DODMAC reverse micellar phase was examined in terms of the temperature, the type of cations in the aqueous phase, and the surfactant concentration in the organic phase. Complete removal of lysozyme from the aqueous phase was obtained when the pH was set one unit higher than the pI of the protein. However, it was found that there is a solubilization limit of lysozyme in the organic phase. Not all the lysozyme extracted out of the initial aqueous phase was solubilized into the DODMAC reverse micellar phase, resulting in the formation of white precipitate at the aqueous-organic interface. Temperature has a negligible effect on the solubilization limit of lysozyme. The value of the solubilization limit is a strong function of the type of cations present in the aqueous phase, indicating an important role of lysozyme-cation interactions on the extraction process. An increase in the DODMAC concentration from 100-200 mM resulted in little change in the highest concentration of lysozyme obtained in the organic phase.  相似文献   

9.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

10.
In the current study, reverse micellar extraction (RME) for the purification of stem bromelain was successfully achieved using the sodium bis(2‐ethylhexyl) sulfosuccinate (AOT)/isooctane system. A maximum forward extraction efficiency of 58.0% was obtained at 100 mM AOT concentration, aqueous phase pH of 8.0 and 0.2 M NaCl. Back extraction studies on altering stripping phase pH and KCl concentration, addition of counter‐ion and iso‐propyl alcohol (IPA) and mechanical agitation with glass beads indicated that IPA addition and agitation with glass beads have significant effects on extraction efficiency. The protein extraction was higher (51.9%) in case of the IPA (10% v/v) added system during back extraction as compared to a cetyltrimethylammonium bromide (100 mM) added system (9.42%). The central composite design technique was used to optimize the back extraction conditions further. Concentration of IPA, amount of glass beads, mixing time, and agitation speed (in rpm) were the variables selected. IPA concentration of 8.5% (v/v), glass bead concentration of 0.6 (w/v), and mixing time of 45 min at 400 rpm resulted in higher back extraction efficiency of 45.6% and activity recovery of 88.8% with purification of 3.04‐fold. The study indicated that mechanical agitation using glass beads could be used for destabilizing the reverse micelles and release of bromelain back into the fresh aqueous phase. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:845–855, 2014  相似文献   

11.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

12.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

13.
Sodium di(2-ethylhexyl) sulfosuccinate, referred to as Aerosol-OT or AOT, was used to remove lysozyme from an aqueous phase via reverse micellar extraction and precipitation method. For both methods, when the surfactant was in excess, a complete removal of lysozyme from the aqueous phase was obtained at the values of pH below the pI of lysozyme. However, for the reverse micellar method, a solubilization limit of lysozyme in the organic phase was observed, and a white precipitate was formed at the aqueous-organic interface. This observation suggested using AOT directly as a precipitating ligand. The lysozyme precipitated with AOT was fully recovered, with its original enzymatic activity, using acetone as a recovery solvent. A mechanism is suggested to explain the solubilization of lysozyme in an AOT reverse micellar system. It is shown that a direct precipitation method can be used with advantage instead of using the reverse micellar extraction method to recover lysozyme from an aqueous phase.  相似文献   

14.
Proteins (bovine serum albumin (BSA), α‐chymotrypsin, cytochrome c, and lysozyme) were extracted from 0.5 to 2.0 g L?1 aqueous solution by adding an equal volume of isooctane solution that contained a surfactant mixture (Aerosol‐OT, or AOT, and a 1,3‐dioxolane (or cyclic ketal) alkyl ethoxylate, CK‐2,13‐E5.6), producing a three‐phase (Winsor‐III) microemulsion with a middle, bicontinuous microemulsion, phase highly concentrated in protein (5–13 g L?1) and small in volume (12–20% of entire volume). Greater than 90% forward extraction was achieved within a few minutes. Robust W‐III microemulsion systems were formulated at 40°C, or at 25°C by including a surfactant with shorter ethoxylate length, CK‐2,13‐E3, or 1.5% NaCl (aq). Successful forward extraction correlated with high partitioning of AOT in the middle phase (>95%). The driving force for forward extraction was mainly electrostatic attractions imposed by the anionic surfactant AOT, with the exception of BSA at high ionic strength, which interacted via hydrophobic interactions. Through use of aqueous stripping solutions of high ionic strength (5.0 wt %) and/or pH 12.0 (to negate the electrostatic attractive driving force), cytochrome c and α‐chymotrypsin were back extracted from the middle phase at >75% by mass, with the specific activity of recovered α‐chymotrypsin being >90% of its original value. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
A method for the simultaneous extraction of oil and proteins from vegetable meals is presented. The method uses hydrocarbon reverse micelles, so that the oil is extracted directly into the hydrocarbon phase and the proteins are solubilized in the water pools of the reverse micelles. The surfactant used is bis (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane at variable w(0) values (w(0) measures the amount of water in the system, where w(0) = [H(2)O]/[AOT]). A comparison with the usual extraction methods is offered. It is shown that with the micelle system the extraction of oil is as large as with the usual methods, and it is independent of w(0). However the amount and type of proteins extracted depends strongly on w(0). At w(0) values below 6, no protein and only low molecular weight compounds (i.e. chlorogenic acid) are extracted, at larger water content (i.e. by increasing the dimension of the micelle water pool), also proteins are solubilized in a significant amount and with a molecular weight which increases by increasing W(0). The protein solubilized in the microemulsion system can be recovered into an aqueous phase with a back-transfer step.  相似文献   

16.
Micellar catalysis of polyphenol oxidase in AOT/cyclohexane   总被引:4,自引:0,他引:4  
The catalytic behaviour of mushroom polyphenol oxidase has been studied in dioctylsulphosuccinate (AOT)/cyclohexane reverse micelles. The steady-state conditions were accomplished up to 20 min and 17 μg protein in the assay towards 4-methylcatechol and no loss of specific activity was observed relative to aqueous medium. The pH activity profile of the enzyme was kept in reverse micelles as in water, showing a plateau between 5 and 6.5. The stability of polyphenol oxidase to pH was also studied and about 20% inactivation was found in reverse micelles relative to aqueous medium at neutral pHs. Moreover there was a decrease of stability at acidic pHs. The optimum Wo obtained was 20 and the enzyme was nearly independent of the surfactant concentration at constant Wo.

Kinetic studies of polyphenol oxidase towards several substrates showed that the substrate inhibition by p-cresol and 4-methylcatechol observed in buffer was not kept in AOT/cyclohexane reverse micelles. Moreover, the Km increased and the catalytic efficiency (V/Km) of the enzyme decreased as the hydrophobicity of substrates was increased.  相似文献   


17.
Reverse micelle extraction is still in the stage of laboratory. Major limitation associated with use of synthetic surfactants in reverse micelle extraction process is the unfolding or denaturation of proteins. Sugar surfactants are thought non-toxic and environmentally benign, and can exhibit interesting interfacial properties, but the application of sugar-based surfactants in protein extraction is still limited. In the present study, we extracted bovine serum albumin (BSA) by using reverse micelles from glucosylammonium (GA) and lactosylammonium (LA) surfactants (with dicarboxylate as counter ion). It was found that under optimum condition, (1) the maximum forward extraction efficiency was ca. 86% with GA, while only around 50% with LA, and (2) almost all BSA solubilized in reverse micelles prepared from GA could be recovered into aqueous phase, while the recovery of BSA from the reverse micelles of LA was lower. In addition, the optimum extraction parameters were closely related to surfactant structure. Therefore, the electrostatic interaction, H-bonding and sugar head size should be important for BSA transfer.  相似文献   

18.
Summary The extraction of penicillin acylase by reverse micellar solutions of a surfactant was studied. A 50 mM solution of dioctyl sodium sulphosuccinate in isooctane extracted 46% of the enzyme activity in a crude periplasmic extract of induced cells of E. coli ATCC 9637. The increase in the specific activity of the final enzyme preparation, after stripping of the organic phase at pH 7.5, in the presence of 1 M KCl, was 8 - fold.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (dioctyl sodium sulphosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin - SDS sodium dodecylsulphate  相似文献   

19.
The reverse micellar system of sodium bis(2-ethylhexyl) phosphate (NaDEHP)/isooctane/brine was used for liquid-liquid extraction of proteins. We investigated the solubilization of cytochrome-c and alpha-chymotrypsin into the NaDEHP reverse micellar phase by varying the pH and NaCl concentration in the aqueous phase. At neutral pH and relatively low ionic strength, the proteins are extracted into the micellar phase with high yield. By contacting the micellar phase with a divalent cation (e.g., Ca(2+)) aqueous solution, the reverse micelles are destabilized and release the protein molecules back into an aqueous solution for recovery. This method separates the proteins from the surfactant with very high overall efficiencies. (c) 1996 John Wiley & Sons, Inc.  相似文献   

20.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号