首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal mast cells of the gastrointestinal tract constitute a separate cell line within the mast cell system of the rat, differing in several respects from the classical connective tissue mast cells and, unlike the latter, requiring special fixation techniques for their demonstration. We have examined some histochemical properties of mucosal mast cells of the duodenum and compared them with connective tissue mast cells of the tongue or skin. The results indicate that the structural integrity of the granules of both types of mast cell is partly dependent on ionic linkages between glycosaminoglycan and protein. The so far unidentified glycosaminoglycan of mucosal mast cells appears to be more soluble than the heparin of connective tissue mast cells. The strongly fluorescent binding of Berberine to the granules of connective tissue mast cells and, depending on their content, of heparin is absent from mucosal mast cells, confirming previous findings which suggested that they contain a glycosaminoglycan with a lower degree of sulphation. Aldehyde fixation by routine procedures reversibly blocks the cationic dye binding of mucosal mast cell granules. The dye binding groups may be unmasked by trypsination or by long staining times of the order of several days. The results suggest that the blocking of staining by aldehydes is caused by a diffusion barrier of a protein nature. Mucosal and connective tissue mast cells thus differ with respect to the spatial arrangement of glycosaminoglycan and protein in their granules. As a result of the study a modified method for the demonstration of mucosal mast cells in tissue sections is described, based on normal formaldehyde fixation and staining in Toluidine Blue for a long time. It has some advantages over previous methods and preserves the structure of mucosal and connective tissue mast cells equally well.  相似文献   

2.
The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites.  相似文献   

3.
The ability of congenitally mast cell-deficient W/Wv anemic mice and mast cell-reconstituted W/Wv mice to reject the intestinal parasite Nippostrongylus brasiliensis was examined. The W/Wv mice were deficient in connective tissue mast cells and mucosal mast cells and, unlike normal mice, did not accumulate intestinal mucosal mast cells in response to N. brasiliensis infection. They had higher peak egg counts than did normal littermates and were slower than littermates to reject the parasites. Reconstitution with bone marrow or spleen cells repaired both the connective tissue and mucosal mast cell defects in W/Wv mice but did not alter the time of parasite rejection or decrease the high peak egg counts. These results indicate that mucosal mast cells that accumulate in the small intestine in response to parasite infection may not be functionally involved in the rejection mechanism.  相似文献   

4.
Mast cell heterogeneity has been described on the basis of differential staining reactions, light microscopic morphology, anatomic location, degranulation after polyamines, biochemical contents, growth requirements, and reactions to lymphokines. We have demonstrated typical "connective-tissue mast cells" by using anatomic criteria, histological staining reactions, electron microscopy, and reaction to compound 48/80 in the guinea pig conjunctiva, eyelid skin, and ileum. A second, much larger population of cells in the ileal mucosa and the conjunctiva, and rarely in the eyelid skin stained reddish-blue with acid toluidine blue in tissue fixed in ethanol-acetate-lead subacetate (BLA) and with alkaline Giemsa in formaldehyde-fixed tissue, did not stain with ethanolic or acid toluidine blue in formaldehyde-fixed tissue or with alkaline Giemsa in BLA-fixed tissue, and did not degranulate after 48/80 treatment. These are features of the rat intestinal "mucosal mast cells"; however, ultrastructural and light microscopic studies with the orcein Giemsa stain demonstrated these cells in the guinea pig to be eosinophils. Tissue culture, biochemical, and immunological studies indicate the existence of a second type of mast cell (bone-marrow-derived mast cell), ultrastructurally almost indistinguishable from the connective tissue mast cell. Our studies demonstrate only one mast cell type in the guinea pig and support the contention that other forms of mast cells are immature forms or variants of the connective-tissue mast cell.  相似文献   

5.
肥大细胞的组织化学与超微结构异质性   总被引:3,自引:0,他引:3  
肥大细胞(mast cell,MC)是一种重要的免疫细胞,分为结缔组织肥大细胞(connective tissue mast cell,CTMC)和黏膜肥大细胞(mucosal mast cell,MMC)两大类。肥大细胞具有异质性,即肥大细胞在不同种属或同一种种属的不同个体、甚至同一种个体的不同组织器官中存在着形态学、分布、颗粒化学成分、染色特性及超微结构和功能等方面的差异性。近些年,人们围绕着肥大细胞的异质性进行了一系列生物学研究,并取得了一定进展,但对异质性的机制认识尚不清楚。深入的讨论、研究与比较仍然很必要。现对肥大细胞的亚群、形态与分布、着染性与免疫组化、超微结构等的异质性研究进展作一简要综述。  相似文献   

6.
Summary There is an accumulation of evidence to suggest that mast cells may play a key role in gastrointestinal inflammation. We have investigated the numbers and heterogeneity in staining properties of mast cells in biopsies of the duodenum of normal subjects (n = 10), and of normal duodenum from patients with Crohn’s disease of the ileum and/or colon (n = 7) or with Helicobacter-associated gastritis of the antrum/corpus (n = 6). In normal donors, two subsets of mast cells, one located in the duodenal mucosa and the other in the submucosa, were clearly distinguished by their morphology and dye-binding properties. Whereas submucosal mast cells stained metachromatically with Toluidine Blue after neutral formalin fixation and emitted a yellow fluorescence after staining with Berberine sulphate, those in the mucosa were invisible using these stains. In patients with gastritis or Crohn’s disease, there were marked changes in the numbers of mucosal mast cells compared with control subjects, even though the duodenal biopsies were from apparently uninvolved tissue. Gastritis was associated with increased mucosal mast cell numbers (controls: 187 ± 23 cells mm−2; gastritis: 413 ± 139 cells mm−2; p = 0.0004), but mean mucosal mast cell counts in the uninvolved duodenum of Crohn’s patients were actually decreased (34 ± 30 cells mm−2, p = 0.0147). The clear differentiation between mucosal and submucosal mast cells on the basis of metachromasia with Toluidine Blue was not seen in biopsies from the patients with gastritis or Crohn’s disease. Previous studies which have suggested that there are no distinct mucosal and submucosal mast cell subsets in the human intestine may, therefore, have been affected by the use of tissue from diseased subjects. Heterogeneity in the expression of mast cell tryptase and chymase was seen by immunohistochemistry using specific antibodies, but the relative numbers of mast cell subsets were critically dependent on the methods used. Using a sensitive staining procedure, the majority of mucosal mast cells stained positively for chymase as well as for tryptase, an observation confirmed by immunoelectron microscopy and immunoabsorption studies. Our findings suggest that early stages in intestinal inflammation may be reflected in changes in mast cell numbers and in their staining properties, and call for a reappraisal of mast cell heterogeneity in the human intestinal tract This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
Mast cell heterogeneity: effects of neuroenteric peptides on histamine release   总被引:15,自引:0,他引:15  
Recent reports suggesting that the actions of certain neuroenteric peptides may be mediated in part by the secretion of histamine and other mast cell contents could have important implications for gastrointestinal motility and secretion. However, evidence for a mast cell-hormonal interaction is based on studies using peritoneal or cutaneous mast cells. Because intestinal mucosal mast cells (MMC) differ functionally from peritoneal mast cells (PMC), we compared the effects of several neurotransmitters and intestinal hormones on histamine secretion from two mast cell types in the rat. MMC hyperplasia was induced in rats by infection with the nematode Nippostrongylus brasiliensis, and MMC were isolated from the small intestine by collagenase digestion. Substance P, somatostatin, vasoactive intestinal polypeptide (VIP), neurotensin, and bradykinin had a potent secretagogue effect on (10(-7) to 10(-4)M) PMC which was temperature-, energy-, and calcium-dependent. In contrast to PMC, MMC released significant amounts of histamine only when challenged with substance P. Acetylcholine, bombesin, motilin, and pentagastrin had no secretory effect on either PMC or MMC. The differences between PMC and MMC in responsiveness to peptides could not be attributed to the MMC isolation procedure because PMC treated similarly or mixed with MMC suspensions retained their responsiveness to these stimuli. Our results extend the concept of neurocrine control of mast cell function, but indicate that mast cells from different sites have distinct profiles of responsiveness to regulatory peptides.  相似文献   

8.
Summary Administration of Compound 48/80 to rats for 5 days resulted in an increase of the specific type of mucosal mast cell, while connective tissue mast cells elsewhere were almost completely degranulated. The number of mucosal mast cells increased slowly for another 5 days and then returned to the control level, in an exponential manner. The half life of the newly formed mast cells was calculated to be about 40 days. This value may be taken as an estimate of the half life of mucosal mast cells. These cells, therefore, constitute a fraction of mast cells with rapid turnover. Available evidence indicates that the classical connective tissue mast cell has a very long life span, without significant turnover in terms of cell death and cell renewal. We suggest that the increase of mucosal mast cells is an indirect effect of Compound 48/80, related to its effect on other mast cells and mediated by material(s) released from these cells during the secretory process.Supported by grants from the Swedish Medical Research Council, Project no 2235  相似文献   

9.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

10.
To study why neonatal and young rats are resistant to the effects of some secretagogues, such as compound 48/80 and 2.5-S nerve growth factor, we examined peritoneal mast cells from 14–15-day-old rats (young rats) and compared them to peritoneal mast cells from adults. Peritoneal mast cells from young rats contain approximately one-tenth of the amount of histamine observed in adult peritoneal mast cells. However, both cell populations contained similar low levels of the mucosal mast cell-associated protease rat mast cell protease II. Histochemical analysis of peritoneal mast cells from young rats using safranin O and berberine sulphate suggested that only a portion of the granules of these cells contained heparin. At an ultrastructural level the young rat peritoneal mast cell contains relatively few granules. The majority of mast cells from young rats have a bilobed or indented nucleus which is only rarely observed in adult cells. Functionally, the young rat peritoneal mast cell demonstrates a significantly reduced histamine release in response to the connective tissue mast cellspecific secretagogues compound 48/80 and 2.5-S nerve growth factor. In contrast, the percent histamine release in response to the neurotransmitter substance P, which degranulates both connective tissue mast cells and intestinal mucosal mast cells, was similar in the adult cells and the young rat cells. This study demonstrates substantial differences between the young rat and adult peritoneal mast cells which may explain the ability of very young animals to withstand large doses of certain secretagogues.  相似文献   

11.
Mast cells play a critical role in IgE-dependent immediate hypersensitivity reactions. This is facilitated by their capacity to release inflammatory mediators and to undergo activation-induced survival upon cross-linking of the high-affinity IgE-receptor (FcepsilonRI). Due to their heterogeneity, mast cells can be divided into two major groups: the connective tissue mast cells and the mucosal mast cells. We have previously shown that IL-3-dependent bone marrow-derived mast cells can undergo activation-induced survival that is dependent on the prosurvival gene A1. In this study, we have used two different protocols to develop murine connective tissue-like mast cells (CTLMC) and mucosal-like mast cells (MLMC) to investigate their capacity to survive an allergic reaction in vitro. In this study, we demonstrate that FcepsilonRI stimulation promotes survival of CTLMC but not MLMC. Similarly, a prominent induction of A1 is observed only in CTLMC but not MLMC. MLMC have a higher basal level of the proapoptotic protein Bim compared with CTLMC. These findings demonstrate a difference among mast cell populations in their ability to undergo activation-induced survival after FcepsilonRI stimulation, which might explain the slower turnover of CTMC in IgE-dependent reactions.  相似文献   

12.
Summary— The role of intestinal eosinophilic granule cells (EGCs) is still a subject of discussion. The aim of this study was to obtain additional functional data for a better characterization of these cells. Biochemical studies indicated the presence of small amounts of histamine, a characteristic and consistent marker of mast cells, in the posterior gut. On the other hand, histamine is always absent from homogenates of isolated EGCs. Using colorimetric assays, we were able to show aryl sulphatase B activity (18.5 ± 3.7 nM nitrocatechol/106 cells) and detected peroxidase (1.86 ± 0.03 ng/106 cells) in EGC homogenates. A cytochemical study enabled us to localize peroxidase in the granules of EGCs. These cells can also phagocytose latex beads. EGCs should thus be considered as homologous with mammalian eosinophils and not with mast cells. The screening for cells in the mucosae containing chondroitin sulphate revealed sparsely represented cells in the loose connective tissue in immediate proximity to blood capillaries. These cells could be mucosal mast cells.  相似文献   

13.
Our previous studies of human lung and intestinal mast cells failed to show the heterogeneity found among mast cells in murine species. Recently, we and others have developed techniques for the enzymatic dispersion of human neonatal skin mast cells. In addition, we are now able to make single cell suspensions of mast cells from adult skin and to purify these cells to near homogeneity. Comparative studies of mast cells from these several sources have uncovered several major differences among them. Adult and neonatal skin mast cells themselves differ in that the former are 10-fold less sensitive to goat anti-human IgE, with maximal release occurring at 3.0 and 0.3 microgram/ml, respectively. Skin mast cells also differ in optimal temperature for release: adult mast cells respond maximally at 23 to 30 degrees C and neonatal cells at 37 degrees C. Skin mast cells from both sources are dramatically different from lung and intestinal mast cells in two aspects. First, skin mast cells are quite responsive to several stimuli--morphine sulfate (10(-4) to 10(-6) M), substance P (10(-5) to 10(-7) M), compound 48/80 (10 to 0.1 microgram/ml), f-Met peptide (10(-6) M), and C5a (10(-8) M)--to which the other mast cells fail to respond. Second, although stimulated skin mast cells produce prostaglandin D2, little leikotriene C4, if any, is generated, unlike lung or intestinal mast cells. These differences in inflammatory potential among human mast cells from various sites have important implications for the management of allergic and inflammatory responses.  相似文献   

14.
Summary Mast cell granules contain a variety of N-linked saccharides. Heterogeneity of the expression of these saccharides in mast cells was studied in rodent and human tissues which were so selected as to contain all the mast cell subsets previously identified using other criteria. Dermal and intestinal mucosal mast cells were stained with lectins using an avidin-biotin system. It was found that dermal and subepidermal mast cells in the rat and mouse, and mucosal and dermal human mast cells showed very similar lectin binding properties to each other, with a fine variation in the inlensity of staining with certain lectins. Rat mucosal mast cells, however, showed a distinctive pattern of lectin binding which was not seen in mast cells from any other tissue studied. The chemical basis of the differences seen were deduced and the possible significance of these structural variations is discussed.  相似文献   

15.
The cDNA and gene for mouse mast cell protease-6 (MMCP-6) have been sequenced and show MMCP-6 to be translated as a prepro-enzyme with a 21-amino acid hydrophobic leader peptide, a 10-amino acid activation peptide, and a 245-amino acid mature enzyme. The mature form of the enzyme has 73% amino acid sequence identity with human and dog mast cell tryptases. The MMCP-6 gene includes 6 exons, with a total span of 1.8 kilobases. A 208-base pair intron was defined which separates the 5'-untranslated sequence of MMCP-6 from the translation initiation codon, thereby presenting a gene organization which distinguishes tryptic serine proteases from chymotryptic serine proteases of the mast cell secretory granule. By RNA blot analysis with a gene-specific probe, MMCP-6 has a unique subclass distribution in being transcribed in mouse connective tissue mast cells but undetectable in mucosal mast cells. MMCP-6 is the first serine protease of any class to be shown to be significantly transcribed in progenitor, bone marrow-derived mast cells, which can reconstitute both mucosal mast cell and connective tissue mast cell populations in mast cell-deficient mice.  相似文献   

16.
Histochemistry and morphology of porcine mast cells   总被引:11,自引:0,他引:11  
Summary Mast cells have been described extensively in rodents and humans but not in pigs, and the objective of this study was to characterize porcine mast cells by histochemistry and electron microscopy. Carnoy's fluid proved to be a good fixative but fixation with neutral buffered formalin blocked staining of most mast cells. Alcian Blue stained more mast cells than did Toluidine Blue (pH 0.5), although Alcian Blue also stained goblet cells. In pigs, unlike rodents, the Alcian Blue method did not distinguish between mast cells in the intestinal mucosa and those in the connective tissue of the intestinal submucosa, tongue and skin. Mast cells were significantly larger in adult pigs than in piglets; in adult pigs and piglets, mast cells in the intestinal mucosa were significantly larger than those in submucosal connective tissue, and they were more varied in shape in piglets and adults. Granules in mast cells in the intestinal mucosa stained less intensely than those in mast cells in connective tissue of tongue, skin and intestinal submucosa. Mast cells in the connective tissue of the tongue, skin and intestinal submucosa fluoresced strongly when stained with berberine sulphate or with a mixture of berberine sulphate and Acridine Orange, but mast cells in the intestinal mucosa did not. All mast cells reacted positively in an enzyme-histochemical method previously used to detect human tryptase but not in a method previously used to detect human chymase. Mast cells in the medulla of thymus stained similarly to mast cells in the intestinal mucosa. Ultrastructural differences between mast cells were not detected.  相似文献   

17.
The isolation of mucosal mast cells and globule leucocytes from the small intestine of sheep immunized with Trichostrongylus colubriformis is described. Sheep mast cell protease was released from these cells in a dose-dependent fashion after incubation with soluble protein from T. colubriformis larvae. Release also occurred with other T. colubriformis antigens whereas non-parasite antigens at comparable protein concentrations evinced only a minimal response. Mucosal mast cells prepared from worm-free sheep also produced a similar minimal response. This is the first report describing the release of sheep mast cell protease from isolated sheep intestinal mucosal mast cells after addition of specific parasite antigens.  相似文献   

18.
In contrast to the roles played by monocytes/macrophages, neutrophils and lymphocytes, the presence and functions of basophils, mast cells/eosinophilic granule cells, eosinophils and rodlet cells in teleosts are areas of controversy. The tissue distribution of mast cells/eosinophilic granule cells in species from a certain genus shows a characteristic pattern, and this pattern is usually also present at the family level. Functionally, the mast cells/eosinophilic granule cells of teleosts show close similarity to the mast cells of mammals. Acute tissue damage is causing mast cell/eosinophilic granule cell degranulation and release of mediators of inflammation, whereas an increase in the number of these cells is often found in chronically inflamed tissues. The mast cells/eosinophilic granule cells of teleosts show marked diversity in their staining properties, with both basophilic and acidophilic components in their granules. In some fish families, e.g. the labrids, the eosinophilic component is dominating, whereas in the pike the granules are strongly basophilic and show the metachromatic staining characteristics found in the granules of mast cells, but being more akin to the granules of the mucosal than to those of the connective tissue type of mast cells of mammals. With respect to rodlet cells, a cell type hitherto clearly demonstrated only in teleosts, a characteristic distribution pattern seems to be established in certain families. In other families rodlet cells are absent in some individuals and present in different tissues in others. However, there is a close relation between the presence of helminths or other noxious agents and the presence of rodlet cells. Massive aggregations of such cells can be seen in affected epithelia of gills or the intestinal tract, and in individuals of species from some fish families they also occur in association with mesothelial and endothelial tissues. The rodlet cell may represent a type of eosinophilic granulocyte that populates the tissues at its immature stage and mature in response to the appropriate stimuli, in a way similar to that of mast cell precursors. Present evidence points to a functional role for the rodlet cells of teleosts in host defence against parasites.  相似文献   

19.
尼罗罗非鱼消化道肥大细胞的组化性质   总被引:1,自引:1,他引:0  
实验采用改良甲苯胺蓝(MTB)、阿利新蓝-沙黄(AB/SO)、甲基绿-派洛宁(MG-P)、天青Ⅱ-伊红-瑞氏混合液和硫堇5种组化染色法,对尼罗罗非鱼(Nile tilapia)消化道组织中的肥大细胞(Mast cell,MC)组化性质进行研究。尼罗罗非鱼的食管、胃及小肠壁内均显示有肥大细胞,在食管和胃的切片标本上肥大细胞主要分布在黏膜固有层和胃腺体之间。在肠道中的肥大细胞主要分布在黏膜固有层和肠上皮下方,少量肥大细胞存在于黏膜下层结缔组织中。细胞呈圆形、椭圆形,也有长梭形的。而且肥大细胞有沿血管分布的特点。5种组化染色结果表明:AB/SO、MTB和MG-P显示的MC效果较好,尤其AB/SO染色效果最好,肥大细胞轮廓清楚,胞质颗粒较清晰;尼罗罗非鱼肥大细胞胞浆颗粒都呈红色,即肥大细胞胞浆主要含肝素,不含组胺。天青Ⅱ-伊红-瑞氏混合液染色效果也很好,但被染的肥大细胞较少;80%乙醇硫堇染色,在尼罗罗非鱼消化道各段组织中均未能鉴定出肥大细胞。尼罗罗非鱼消化道肥大细胞大多分布于浅层的黏膜或血管、腺体周围的结缔组织等易表露于环境抗原的位点。罗非鱼消化道黏膜层结缔组织中的肥大细胞与大多数脊椎动物的肥大细胞一样,具有沿血管分布的特性,说明硬骨鱼的肥大细胞如哺乳动物肥大细胞一样与血管有着密切的关系。    相似文献   

20.
The beige mouse, a homologue of the Chediak-Higashi syndrome in man, possesses abnormally large granules in many tissue cells. The granules in the mucosal mast cells (MMC) of the small intestine of beige and littermate C57BL/6J mice were examined after infecting the mice with the intestinal parasite, Nippostrongylus brasiliensis. MMC in both beige and littermate mice had irregular granules which contained paracrystalline substructures embedded in an amorphous matrix. Granules were not observed in fusion with the cell membrane. Instead, in late-stage mast cells, the granule membrane broke down, the granule contents were spread throughout the cytoplasm, and the cell organelles disintegrated. Unlike connective tissue mast cells, MMC were poorly demonstrated with formalin fixation and toluidine blue staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号