首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fungi are very abundant and functionally pivotal in Arctic terrestrial ecosystems. Yet, our understanding of their community composition, diversity and particularly their environmental drivers is superficial at the very best. In this issue of Molecular Ecology, Timling et al. ( 2014 ) describe perhaps one of the most comprehensive and geographically ambitious molecular studies on Arctic fungal communities to date. The results highlight the potential sensitivity of the fungal communities to plant communities, environmental conditions and therefore to environmental change. Thus, these studies lay a foundation to educated speculation on the fungal community migration northwards as a result of predicted climate change.  相似文献   

2.
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning—that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 60 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community‐based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought‐plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.  相似文献   

3.
Rapid climate change threatens plant communities. While many studies address the impact of climate change on plants and mechanisms of their resilience to climate stressors, the role of the plant microbiome in aiding plants' adaptation to climate change has been less investigated. We argue here that fungal endophytes, an important constituent of the plant microbiome, may be key to the ability of plants to adapt to climatic stressors. The rapid adaptive response of endophytes coupled with their ability to ‘transfer’ resistance to their hosts may fast-track plants' adaptation to climate change. We briefly review the importance of Class 3 fungal endophytes of terrestrial plants and discuss how they may accelerate adaptations to climate change in crops and natural plant communities and call for efforts directed at improving the understanding of fungal endophyte-facilitated plant health. Such information could aid in devising improved strategies for mitigating climate change effects on plant communities.  相似文献   

4.
Wu CA  Lowry DB  Cooley AM  Wright KM  Lee YW  Willis JH 《Heredity》2008,100(2):220-230
The plant genus Mimulus is rapidly emerging as a model system for studies of evolutionary and ecological functional genomics. Mimulus contains a wide array of phenotypic, ecological and genomic diversity. Numerous studies have proven the experimental tractability of Mimulus in laboratory and field studies. Genomic resources currently under development are making Mimulus an excellent system for determining the genetic and genomic basis of adaptation and speciation. Here, we introduce some of the phenotypic and genetic diversity in the genus Mimulus and highlight how direct genetic studies with Mimulus can address a wide spectrum of ecological and evolutionary questions. In addition, we present the genomic resources currently available for Mimulus and discuss future directions for research. The integration of ecology and genetics with bioinformatics and genome technology offers great promise for exploring the mechanistic basis of adaptive evolution and the genetics of speciation.  相似文献   

5.
General circulation models predict increases in temperature and precipitation in the Arctic as the result of increases in atmospheric carbon dioxide concentrations. Arctic ecosystems are strongly constrained by temperature, and may be expected to be markedly influenced by climate change. Perturbation experiments have been used to predict how Arctic ecosystems will respond to global climatic change, but these have often simulated individual perturbations (e.g. temperature alone) and have largely been confined to the short Arctic summer. The importance of interactions between global change variables (e.g. CO2, temperature, precipitation) has rarely been examined, and much experimentation has been short-term. Similarly, very little experimentation has occurred in the winter when General circulation models predict the largest changes in climate will take place. Recent studies have clearly demonstrated that Arctic ecosystems are not dormant during the winter and thus much greater emphasis on experimentation during this period is essential to improve our understanding of how these ecosystems will respond to global change. This, combined with more long-term experimentation, direct observation of natural vegetation change (e.g. at the tundra/taiga boundary) and improvements in model predictions is necessary if we are to understand the future nature and extent of Arctic ecosystems in a changing climate.  相似文献   

6.
《Trends in plant science》2023,28(5):519-526
Infectious plant diseases are a major threat to global agricultural productivity, economic development, and ecological integrity. There is widespread concern that these social and natural disasters caused by infectious plant diseases may escalate with climate change and computer modeling offers a unique opportunity to address this concern. Here, we analyze the intrinsic problems associated with current modeling strategies and highlight the need to integrate evolutionary principles into polytrophic, eco-evolutionary frameworks to improve predictions. We particularly discuss how evolutionary shifts in functional trade-offs, relative adaptability between plants and pathogens, ecosystems, and climate preferences induced by climate change may feedback to future plant disease epidemics and how technological advances can facilitate the generation and integration of this relevant knowledge for better modeling predictions.  相似文献   

7.
The impact of climate change on the soil microbiome potentially alters the biogeochemical cycle of terrestrial ecosystems. In semi‐arid environments, water availability is a major constraint on biogeochemical cycles due to the combination of high summer temperatures and low rainfall. Here, we explored how 10 years of irrigation of a water‐limited pine forest in the central European Alps altered the soil microbiome and associated ecosystem functioning. A decade of irrigation stimulated tree growth, resulting in higher crown cover, larger yearly increments of tree biomass, increased litter fall and greater root biomass. Greater amounts of plant‐derived inputs associated with increased primary production in the irrigated forest stands stimulated soil microbial activity coupled with pronounced shifts in the microbiome from largely oligotrophic to more copiotrophic lifestyles. Microbial groups benefitting from increased resource availabilities (litter, rhizodeposits) thrived under irrigation, leading to enhanced soil organic matter mineralization and carbon respired from irrigated soils. This unique long‐term study provides new insights into the impact of precipitation changes on the soil microbiome and associated ecosystem functioning in a water‐limited pine forest ecosystem and improves our understanding of the persistency of long‐term soil carbon stocks in a changing climate.  相似文献   

8.
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

9.
《植物生态学报》1958,44(5):494
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

10.
The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, http://www.foresttrac.eu/) sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.  相似文献   

11.
According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant–herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.  相似文献   

12.
Nutrient availability limits productivity of arctic ecosystems, and this constraint means that the amount of nitrogen (N) in plant canopies is an exceptionally strong predictor of vegetation productivity. However, climate change is predicted to increase nutrient availability leading to increases in carbon sequestration and shifts in community structure to more productive species. Despite tight coupling of productivity with canopy nutrients at the vegetation scale, it remains unknown how species/shoot level foliar nutrients couple to growth, or how climate change may influence foliar nutrients–productivity relationships to drive changes in ecosystem carbon gain and community structure. We investigated the influence of climate change on arctic plant growth relationships to shoot level foliar N and phosphorus (P) in three dominant subarctic dwarf shrubs using an 18-year warming and nutrient addition experiment. We found a tight coupling between total leaf N and P per shoot, leaf area and shoot extension. Furthermore, a steeper shoot length-leaf N relationship in deciduous species (Vaccinium myrtillus and Vaccinium uliginosum) under warming manipulations suggests a greater capacity for nitrogen to stimulate growth under warmer conditions in these species. This mechanism may help drive the considerable increases in deciduous shrub cover observed already in some arctic regions. Overall, our work provides the first evidence at the shoot level of tight coupling between foliar N and P, leaf area and growth i.e. consistent across species, and provides mechanistic insight into how interspecific differences in alleviation of nutrient limitation will alter community structure and primary productivity in a warmer Arctic.  相似文献   

13.
Predicting phenology by integrating ecology,evolution and climate science   总被引:4,自引:0,他引:4  
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology – the timing of life‐history events. Phenology has well‐demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species’ reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.  相似文献   

14.
Research has shown species undergoing range contractions and/or northward and higher elevational movements as a result of changing climates. Here, we evaluate how the distribution of a group of cold‐adapted plant species with similar evolutionary histories changes in response to warming climates. We selected 29 species of Micranthes (Saxifragaceae) representing the mountain and Arctic biomes of the Northern Hemisphere. For this analysis, 24,755 data points were input into ecological niche models to assess both present fundamental niches and predicted future ranges under climate change scenarios. Comparisons were made across the Northern Hemisphere between all cold‐adapted Micranthes, including Arctic species, montane species, and species defined as narrow endemics. Under future climate change models, 72% of the species would occupy smaller geographical areas than at present. This loss of habitat is most pronounced in Arctic species in general, but is also prevalent in species restricted to higher elevations in mountains. Additionally, narrowly endemic species restricted to high elevations were more susceptible to habitat loss than those species found at lower elevations. Using a large dataset and modeling habitat suitability at a global scale, our results empirically model the threats to cold‐adapted species as a result of warming climates. Although Arctic and alpine biomes share many underlying climate similarities, such as cold and short growing seasons, our results confirm that species in these climates have varied responses to climate change and that key abiotic variables differ between these two habitats.  相似文献   

15.
Climate and environmental condition drive biodiversity at many levels of biological organization, from populations to ecosystems. Combined with paleoecological reconstructions, palaeogenetic information on resident populations provides novel insights into evolutionary trajectories and genetic diversity driven by environmental variability. While temporal observations of changing genetic structure are often made of sexual populations, little is known about how environmental change affects the long‐term fate of asexual lineages. Here, we provide information on obligately asexual, triploid Daphnia populations from three Arctic lakes in West Greenland through the past 200–300 years to test the impact of environmental change on the temporal and spatial population genetic structure. The contrasting ecological state of the lakes, specifically regarding salinity and habitat structure may explain the observed lake‐specific clonal composition over time. Palaeolimnological reconstructions show considerable regional environmental fluctuations since 1,700 (the end of the Little Ice Age), but the population genetic structure in two lakes was almost unchanged with at most two clones per time period. Their local populations were strongly dominated by a single clone that has persisted for 250–300 years. We discuss possible explanations for the apparent population genetic stability: (a) persistent clones are general‐purpose genotypes that thrive under broad environmental conditions, (b) clonal lineages evolved subtle genotypic differences unresolved by microsatellite markers, or (c) epigenetic modifications allow for clonal adaptation to changing environmental conditions. Our results motivate research into the mechanisms of adaptation in these populations, as well as their evolutionary fate in the light of accelerating climate change in the polar regions.  相似文献   

16.
Footprints of climate change in the Arctic marine ecosystem   总被引:3,自引:0,他引:3  
In this article, we review evidence of how climate change has already resulted in clearly discernable changes in marine Arctic ecosystems. After defining the term ‘footprint’ and evaluating the availability of reliable baseline information we review the published literature to synthesize the footprints of climate change impacts in marine Arctic ecosystems reported as of mid‐2009. We found a total of 51 reports of documented changes in Arctic marine biota in response to climate change. Among the responses evaluated were range shifts and changes in abundance, growth/condition, behaviour/phenology and community/regime shifts. Most reports concerned marine mammals, particularly polar bears, and fish. The number of well‐documented changes in planktonic and benthic systems was surprisingly low. Evident losses of endemic species in the Arctic Ocean, and in ice algae production and associated community remained difficult to evaluate due to the lack of quantitative reports of its abundance and distribution. Very few footprints of climate change were reported in the literature from regions such as the wide Siberian shelf and the central Arctic Ocean due to the limited research effort made in these ecosystems. Despite the alarming nature of warming and its strong potential effects in the Arctic Ocean the research effort evaluating the impacts of climate change in this region is rather limited.  相似文献   

17.
An increasing number of short‐term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present‐day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.  相似文献   

18.
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. 2012 ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. ( 2014 ) provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. ( 2014 ) use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. 1 ). By combining the two methods, De Kort et al. ( 2014 ) were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. ( 2014 ) provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. 2013 ).  相似文献   

19.
We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.  相似文献   

20.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号