首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The nucleoids of radiation‐resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid‐enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics. The ssDNA‐binding protein SSB, DNA gyrase subunits GyrA and GyrB, DNA topoisomerase I, RecA recombinase, UvrA excinuclease, RecQ helicase, DdrA, DdrB, and DdrD proteins were found in significantly higher amounts in irradiated nucleoids of both Deinococcus species. We observed, by immunofluorescence microscopy, the subcellular localization of these proteins in D. radiodurans, showing for the first time the recruitment of the DdrD protein into the D. radiodurans nucleoid. We specifically followed the kinetics of recruitment of RecA, DdrA, and DdrD to the nucleoid after irradiation. Remarkably, RecA proteins formed irregular filament‐like structures 1 h after irradiation, before being redistributed throughout the cells by 3 h post‐irradiation. Comparable dynamics of DdrD localization were observed, suggesting a possible functional interaction between RecA and DdrD. Several proteins involved in nucleotide synthesis were also seen in higher quantities in the nucleoids of irradiated cells, indicative of the existence of a mechanism for orchestrating the presence of proteins involved in DNA metabolism in nucleoids in response to massive DNA damage. All MS data have been deposited in the ProteomeXchange with identifier PXD00196 ( http://proteomecentral.proteomexchange.org/dataset/PXD000196 ).  相似文献   

2.
Transmission electron microscopy revealed that the nucleoid of the extremely radioresistant bacteria Deinococcus radiodurans may adopt an unusual ring shape. This led to the hypothesis that the tight toroidal package of the D. radiodurans genome might contribute to radioresistance by preventing diffusion of ends of double-stranded DNA breaks. The molecular arrangement of DNA in the nucleoid, which must be determined to test this hypothesis, is not discernible by conventional methods of electron microscopy. We have applied cryoelectron microscopy of vitreous sections and found that the DNA arrangement in D. radiodurans differs from toroidal spooling. Diffuse coralline nucleoids of exponentially growing D. radiodurans do not reveal any particular molecular order. Electron-dense granules are generally observed in the centers of nucleoids. In stationary-phase cells, the nucleoid segregates from cytoplasm and DNA filaments show locally parallel arrangements, with increasing aspects of cholesteric liquid crystalline phase upon prolonged starvation. The relevance of the observed nucleoid organization to the radiation resistance of D. radiodurans is discussed.  相似文献   

3.
The nucleoid of radioresistant bacteria, including D .  radiodurans , adopts a highly condensed structure that remains unaltered after exposure to high doses of irradiation. This structure may contribute to radioresistance by preventing the dispersion of DNA fragments generated by irradiation. In this report, we focused our study on the role of HU protein, a nucleoid-associated protein referred to as a histone-like protein, in the nucleoid compaction of D. radiodurans. We demonstrate, using a new system allowing conditional gene expression, that HU is essential for viability in D. radiodurans . Using a tagged HU protein and immunofluorescence microscopy, we show that HU protein localizes all over the nucleoid and that when HU is expressed from a thermosensitive plasmid, its progressive depletion at the non-permissive temperature generates decondensation of DNA before fractionation of the nucleoid into several entities and subsequent cell lysis. We also tested the effect of the absence of Dps, a protein also involved in nucleoid structure. In contrast to the drastic effect of HU depletion, no change in nucleoid morphology and cell viability was observed in dps mutants compared with the wild-type, reinforcing the major role of HU in nucleoid organization and DNA compaction in D. radiodurans .  相似文献   

4.
The bacterium Deinococcus radiodurans is one of the most resistant organisms to ionizing radiation and other DNAdamaging agents. Although, at present, 30 Deinococcus species have been identified, the whole-genome sequences of most species remain unknown, with the exception of D. radiodurans (DRD), D. geothermalis, and D. deserti. In this study, comparative genomic hybridization (CGH) microarray analysis of three Deinococcus species, D. radiopugnans (DRP), D. proteolyticus (DPL), and D. radiophilus (DRPH), was performed using oligonucleotide arrays based on DRD. Approximately 28%, 14%, and 15% of 3,128 open reading frames (ORFs) of DRD were absent in the genomes of DRP, DPL, and DRPH, respectively. In addition, 162 DRD ORFs were absent in all three species. The absence of 17 randomly selected ORFs was confirmed by a Southern blot. Functional classification showed that the absent genes spanned a variety of functional categories: some genes involved in amino acid biosynthesis, cell envelope, cellular processes, central intermediary metabolism, and DNA metabolism were not present in any of the three deinococcal species tested. Finally, comparative genomic data showed that 120 genes were Deinococcus-specific, not the 230 reported previously. Specifically, ddrD, ddrO, and ddrH genes, previously identified as Deinococcus-specific, were not present in DRP, DPL, or DRPH, suggesting that only a portion of ddr genes are shared by all members of the genus Deinococcus.  相似文献   

5.
RecA is essential for extreme radiation tolerance in Deinococcus radiodurans . Interestingly, Sahara bacterium Deinococcus deserti has three recA genes ( recA C, recA P1, recA P3) that code for two different RecA proteins (RecAC, RecAP). Moreover, and in contrast to other sequenced Deinococcus species, D. deserti possesses homologues of translesion synthesis (TLS) DNA polymerases, including ImuY and DnaE2. Together with a lexA homologue, imuY and dnaE2 form a gene cluster similar to a widespread RecA/LexA-controlled mutagenesis cassette. After having developed genetic tools, we have constructed mutant strains to characterize these recA and TLS polymerase genes in D. deserti . Both RecAC and RecAP are functional and allow D. deserti to survive, and thus repair massive DNA damage, after exposure to high doses of radiation. D. deserti is mutable by UV, which requires ImuY, DnaE2 and RecAC, but not RecAP. RecAC, but not RecAP, facilitates induced expression of imuY and dnaE2 following UV exposure. We propose that the extra recA P1 and recA P3 genes may provide higher levels of RecA protein for efficient error-free repair of DNA damage, without further increasing error-prone lesion bypass by ImuY and DnaE2, whereas limited TLS may contribute to adaptation to harsh conditions by generating genetic variability.  相似文献   

6.
7.
杜邱  何淑雅  马云  李斌元  孙晓宇  廖端芳 《生物磁学》2011,(6):1037-1042,1071
目的:克隆耐辐射球菌ddrO基因,并对其进行生物信息学分析,预测其功能。方法:根据耐辐射球菌ddrO基因序列,由Primer Premier 5设计一对引物,以提取的耐辐射球菌基因组为模板,PCR扩增获得耐辐射球菌ddrO基因,序列测定并利用生物信息学软件对ddrO基因的理化性质、高级结构及生物学功能等进行分析与预测。结果:成功获得了ddrO基因。生物信息学分析发现,ddrO基因核苷酸序列长度为396bp,编码一个131aa组成的相对分子质量为14.993kD的预测的DdrO转录因子。核酸同源性搜索及比较分析仅在与耐辐射球菌同属的Deinococcus geothermalis和Deinococcus deserti中发现高度相似的序列;蛋白同源性搜索发现一些与DdrO显著同源的蛋白,如Deide_20570(95%),Dgeo_0336(90%),Deide_3p02170(82%)等;结构域分析发现DdrO含有HTH(helix-turn-helix)DNA结合结构域。结论:根据生物信息学结果预测DdrO蛋白可能具有转录调控作用,参与DNA修复和复制,在耐辐射球菌的DNA损伤修复过程中发挥一定作用。  相似文献   

8.
The histone-like protein HU from Escherichia coli is involved in DNA compaction and in processes such as DNA repair and recombination. Its participation in these events is reflected in its ability to bend DNA and in its preferred binding to DNA junctions and DNA with single-strand breaks. Deinococcus radiodurans is unique in its ability to reconstitute its genome from double strand breaks incurred after exposure to ionizing radiation. Using electrophoretic mobility shift assays (EMSA), we show that D.radiodurans HU (DrHU) binds preferentially only to DNA junctions, with half-maximal saturation of 18 nM. In distinct contrast to E.coli HU, DrHU does not exhibit a marked preference for DNA with nicks or gaps compared to perfect duplex DNA, nor is it able to mediate circularization of linear duplex DNA. These unexpected properties identify DrHU as the first member of the HU protein family not to serve an architectural role and point to its potential participation in DNA recombination events. Our data also point to a mechanism whereby differential target site selection by HU proteins is achieved and suggest that the substrate specificity of HU proteins should be expected to vary as a consequence of their individual capacity for inducing the required DNA bend.  相似文献   

9.
10.
The genes of E. coli are located on a circular chromosome of 4.6 million basepairs. This 1.6 mm long molecule is compressed into a nucleoid to fit inside the 1-2 m cell in a functional format. To examine the role of DNA supercoiling as nucleoid compaction force we modulated the activity of DNA gyrase by electronic, genetic, and chemical means. A model based on physical properties of DNA and other cell components predicts that relaxation of supercoiling expands the nucleoid. Nucleoid size did not increase after reduction of DNA gyrase activity by genetic or chemical means, but nucleoids did expand upon chemical inhibition of gyrase in chloramphenicol-treated cells, indicating that supercoiling may help to compress the genome.  相似文献   

11.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.  相似文献   

12.
PprA, a pleiotropic protein involved in radioresistance of Deinococcus radiodurans was detected in multiprotein DNA processing complex identified from this bacterium. pprA mutant expressing GFP-PprA could restore its wild type resistance of γ radiation. Under normal conditions, GFP-PprA expressing cells showed PprA localization on both septum trapped nucleoids (STN) and nucleoids located elsewhere (MCN). Cell exposed to 4 kGy γ radiation showed nearly 2 h growth lag and during this growth arrest phase, the majority of the cells had GFP-PprA located on MCN. While in late phase (~120 min) PIR cells, when cells are nearly out of growth arrest, PprA was maximally found with STN. These cells when treated with nalidixic acid showed diffused localization of PprA across the septum. gyrA disruption mutant of D. radiodurans showed growth inhibition, which increased further in gyrA pprA mutant. Interestingly, gyrA mutant showed ~20-fold less resistance to γ radiation as compared to wild type, which did increase further in gyrA pprA mutant. These results suggested that PprA localization undergoes a dynamic change during PIR, and its localization on nucleoid near septum and functional interaction with gyrase A might suggest a mechanism that could explain PprA role in genome segregation possibly through topoisomerase II.  相似文献   

13.
Bacterial DNA is largely localized in compact bodies known as nucleoids. The structure of the bacterial nucleoid and the forces that maintain its DNA in a highly compact yet accessible form are largely unknown. In the present study, we used urea to cause controlled unfolding of spermidine nucleoids isolated from Escherichia coli to determine factors that are involved in nucleoid compaction. Isolated nucleoids unfolded at approximately 3.2 M urea. Addition of pancreatic RNase reduced the urea concentration for unfolding to approximately 1.8 M urea, indicating a role of RNA in nucleoid compaction. The transitions at approximately 3.2 and approximately 1.8 M urea reflected a RNase-sensitive and a RNase-resistant restraint to unfolding, respectively. Removal of the RNase-sensitive restraint allowed us to test for roles of proteins and supercoiling in nucleoid compaction and structure. The remaining (RNase-resistant) restraints were removed by low NaCl concentrations as well as by urea. To determine if stability would be altered by treatments that caused morphological changes in the nucleoids, transitions were also measured on nucleoids from cells exposed to chloramphenicol; the RNase-sensitive restraint in such nucleoids was stabilized to much higher urea concentrations than that in nucleoids from untreated cells, whereas the RNase-resistant transition appeared unchanged.  相似文献   

14.
15.
T R Steck  K Drlica 《Cell》1984,36(4):1081-1088
Nucleoids isolated from a temperature-sensitive gyrB mutant of E. coli, incubated at restrictive temperatures, exhibit increased sedimentation rates and an abnormal doublet or dumbbell-shaped morphology. Shifting cells from restrictive to permissive temperature prior to nucleoid isolation leads to decreases in the percentage of doublet nucleoids and in nucleoid sedimentation rates. When nucleoids isolated from mutant cells exposed to restrictive temperature are incubated with purified gyrase, the percentage of doublet nucleoids decreases as the total number of nucleoids increases. These results, together with the demonstrated ability of gyrase to decatenate small circular DNA molecules in vitro, suggest that gyrase participates in bacterial chromosome segregation through its decatenating activity.  相似文献   

16.
The bacterial chromosomal DNA is folded into a compact structure called as ‘nucleoid’ so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like “PAKK” motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of E. coli and mycobacterial IHF in DNA compaction.  相似文献   

17.
Nucleoids fromEscherichia coliwere isolated in the presence of spermidine at low salt concentrations. The nucleoids denature at relatively low temperatures or salt concentrations, yielding broad slowly sedimenting zones and/or macroscopic aggregates upon sucrose gradient centrifugation. Denaturation is accompanied by a loss of a characteristically compact shape as visualized by light and electron microscopy. Addition of polyethylene glycol or dextran prevents these changes, extending the range of stability of the isolated nucleoids to temperatures and ionic conditions like those which commonly occurin vivo.The effects of the polymers are consistent with stabilization by macromolecular crowding. Enzymatic digestion of the nucleoid DNA primarily releases three small proteins (H-NS, FIS, and HU) and RNA polymerase, as well as residual lysozyme from the cell lysis procedure. If isolated nucleoids are extracted with elevated salt concentrations under crowded, stabilized conditions, two of the proteins (HU and lysozyme) are efficiently removed and the compact form of the nucleoids is retained. These extracted nucleoids maintain their compact form upon reisolation into the initial uncrowded low-salt medium, indicating that HU, the most common “histone-like” protein ofE. coli,is not a necessary component for maintaining compaction in these preparations.  相似文献   

18.
Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.  相似文献   

19.
It has been suggested in a number of investigations that the high vulnerability of mitochondrial DNA to reactive oxygen species and other damaging agents is due to the absence in mitochondria of histones complexed with DNA. In the present study it was shown that DNA-binding proteins of mitochondrial nucleoids were able to shield mitochondrial DNA from X-ray radiation and hydrogen peroxide, as nuclear histones did. Mitochondria, mitochondrial nucleoid proteins, and histones were isolated from mouse liver cells. The degree of damage to or protection of mitochondrial DNA was assessed from the yield of its PCR amplification product. The in vitro experiments demonstrated that mouse mitochondrial DNA, when in complex with mitochondrial nucleoids or nuclear histones, was damaged much less by radiation and/or hydrogen peroxide than in the absence of these proteins and histones. No significant difference between mitochondrial nucleoid proteins and nuclear histones was revealed in their efficiency to protect mitochondrial DNA from the damaging effect of radiation and hydrogen peroxide. It is likely that the nucleoid proteins in the mitochondria shield mitochondrial DNA against the attack of reactive oxygen species, thus significantly decreasing the level of the oxidative damage to mitochondrial DNA.  相似文献   

20.
In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号