首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.  相似文献   

2.
The nitrergic innervation of the sphincter of Oddi (SO) and duodenum in the Australian brush-tailed possum and the possible association of this innervation with the neuropeptide vasoactive intestinal polypeptide (VIP) were investigated by using immunohistochemical localisation of nitric oxide synthase (NOS) and VIP, together with the general neuronal marker, protein gene product 9.5 (PGP9.5). Whole-mount preparations of the duodenum and attached SO without the mucosa, submucosa and circular muscle (n=12) were double- and triple-labelled. The density of myenteric nerve cell bodies of the SO in the more distal region (duodenal end) was significantly higher than that in the more proximal region. In the SO, approximately 50% of all cells were NOS-immunoreactive (IR), with 27% of the NOS-IR cells being VIP-IR. Within the duodenal myenteric plexus, NOS immunoreactivity was present in about 25% of all neurons, with 27% of these NOS-IR neurons also being VIP-IR, a similar proportion to that in the SO. Varicose nerve fibres with NOS and VIP immunoreactivity were present within the myenteric and submucous plexuses of the SO and duodenum, and in the circular and longitudinal muscle layers. The NOS-positive cells within both the SO and duodenum were unipolar, displaying a typical Dogiel type I morphology. The myenteric plexuses of the SO and duodenum were in direct continuity, with many interconnecting nerve trunks, some of which showed NOS and VIP immunoreactivity. Thus, the possum possesses an extensive NOS innervation of the SO and duodenum, with a significantly higher proportion of NOS-IR neurons within the SO, a subset of which contains VIP.  相似文献   

3.
Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.  相似文献   

4.
Vasoactive intestinal polypeptide (VIP) and nitric oxide synthase (NOS) positive innervation patterns were immunohistochemically and statistically evaluated in the human colon. Specimens from the right colon (cecum, ascending and right transverse colon) and left colon (left transverse and descending colon) were obtained surgically, fixed either in paraformaldehyde or in Carnoy's or in Bouin's, and paraffin embedded. Sections were stained with hematoxylin-eosin, toluidine blue, cresyl violet, neuron-specific enolase, anti-VIP, and anti-NOS. The same results were obtained regardless of the fixative used. Enolase-positive, VIP-positive, and NOS-positive cells were occasionally found within the circular muscle and interpreted as neurons. VIP-positive nerve fibers were evenly distributed within the circular muscle while NOS-positive ones were lacking in its inner portion. The left colon was richer in neurons than the right colon, at both plexuses. VIP- and NOS-positive neuron densities were higher at the left than at the right colon, whereas at all colonic levels VIP-positive neuron percentages at both plexuses and NOS-positive ones at the myenteric plexus were simular. At the submucous plexus the NOS-positive neuron percentage was lower than that of the VIP-positive one. In conclusion: (a) the right colon contains a lower number of neurons and of VIP- and NOS-positive ones than the left colon, and (b) VIP- and NOS-positive fibers are differently distributed in the inner and outer portions of the circular muscle.  相似文献   

5.
Zinc ions in the synaptic vesicles of zinc-enriched neurons (ZEN) seem to have an important role in normal physiological and pathophysiological processes in target organ innervation. The factor directly responsible for the transport of zinc ions into synaptic vesicles is zinc transporter 3 (ZnT3), a member of the divalent cation zinc transporters and an excellent marker of ZEN neurons. As data concerning the existence of ZEN neurons in the small intestine is lacking, this study was designed to disclose the presence and neurochemical coding of such neurons in the porcine jejunum. Cryostat sections (10 m?? thick) of porcine jejunum were processed for routine double- and triple-immunofluorescence labeling for ZnT3 in various combinations with immunolabeling for other neurochemicals including pan-neuronal marker (PGP9.5), substance P (SP), somatostatin (SOM), vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS), leu-enkephalin (LENK), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), galanin (GAL), and calcitonin-gene related peptide (CGRP). Immunohistochemistry revealed that approximately 39%, 49%, and 45% of all PGP9.5- positive neurons in the jejunal myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively, were simultaneously ZnT3+. The majority of ZnT3+ neurons in all plexuses were also VAChT-positive. Both VAChT-positive and VAChT-negative ZnT3+ neurons co-expressed a variety of active substances with diverse patterns of co-localization depending on the plexus studied. In the MP, the largest populations among both VAChT-positive and VAChT-negative ZnT3+ neurons were NOS-positive cells. In the OSP and ISP, substantial subpopulations of ZnT3+ neurons were VAChT-positive cells co-expressing SOM and GAL, respectively. The broad-spectrum of active substances that co-localize with the ZnT3+ neurons in the porcine jejunum suggests that ZnT3 takes part in the regulation of various processes in the gut, both in normal physiological and during pathophysiological processes.  相似文献   

6.
The distribution of nitric oxide synthase-immunoreactive (NOS-IR) axons and their relationship to structures immunoreactive to vasoactive intestinal polypeptide (VIP), substance P (SP) and tyrosine hydroxylase (TH) were studied by means of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) technique or double-labelling immunofluorescence in the genital organs of cow and pig. Relevant neurons were also investigated in the pig. NOS-containing neural structures were TH-immunonegative in bovine or porcine genital organs, or in the studied ganglia. In the bovine ovary, NOS-IR nerves were neither VIP-IR nor SP-IR, whereas in the pig, most NOS-containing axons were also VIP-IR. The oviduct was supplied by single NOS/VIP- or NOS/SP-containing nerves, whereas in the uterus, NOS-IR axons were moderate in number, often being immunoreactive for VIP or SP. Numerous NOS/VIP-IR and NOS/SP-IR nerves were found in the vagina of both species. In all tissues studied, NOS-IR axons were mainly related to vascular smooth muscle. Most of the neurons of the paracervical ganglia and some neurons in dorsal root ganglia exhibited strong NOS activity. Only single neurons in sympathetic ganglia were NADPH-d-positive. Most nitrergic neurons in the autonomic ganglia were VIP-IR but SP-immunonegative. The sensory neurons were mostly NOS/SP-IR, whereas only single neurons co-expressed NOS and VIP immunoreactivity.  相似文献   

7.
本文采用免疫组织化学ABC法研究血管活性肠肽(VIP) 能神经和P物质(SP) 能神经在人十二指肠壁内的分布。结果显示: VIP能和SP能神经纤维和神经元均呈棕褐色; VIP能神经纤维遍布肠壁各层,SP能神经纤维主要分布于肌层和神经丛; VIP能和SP能神经元见于肌间和粘膜下神经, 尤以后者为多, 但形态特点不同; 在肌间神经丛, SP能神经元比VIP能神经元多。粘膜内可见VIP能和SP能神经元, 多单个分布在粘膜肌层内。结果表明: 1VIP能和SP能神经在人十二指肠壁内分布有差异。2粘膜内存在VIP能和SP能神经元  相似文献   

8.
Enkephalin (ENK) immunoreactivity was localised in different neuronal subpopulations of the myenteric plexus in the guinea-pig gastric fundus using immunohistochemistry for neurone-specific enolase (NSE), ENK, choline acetyltransferase (ChAT), substance P (SP), neuropeptide Y (NPY), calretinin (CALRET), and somatostatin (SOM). NADPH-diaphorase staining was used to label nitric oxide synthase (NOS)-containing neurones. ENK was observed in 44% of the myenteric neurones. The major ENK-positive subpopulations were ChAT/ENK (35% of ENK-positive neurones), ChAT/SP/ENK (26%), NOS/NPY/ENK (22%) and ChAT/SP/ENK/CALRET (9%). The projection pathways of these ENK-positive subpopulations to the circular muscle and the mucosa were determined using retrograde labelling with DiI in organ culture followed by immunohistochemistry. Of myenteric neurones retrogradely labelled from the mucosa and the circular muscle, 13% and 48% exhibited ENK immunoreactivity, respectively. Three major ENK-positive subpopulations innervating the mucosa or circular muscle were identified: ascending ChAT/SP/ENK (7% of all mucosa neurones; 24% of all circular muscle neurones), ascending ChAT/ENK (4%; 15%) and descending NOS/NPY/ENK (1%; 8%) neurones. Only very few CALRET- or SOM-positive neurones projected to the mucosa or circular muscle. ChAT/SP/ENK and ChAT/ENK neurones might function as ascending excitatory muscle motor neurones, whereas NOS/NPY/ENK neurones are most likely descending inhibitory muscle motor neurones. The relatively few ENK-positive mucosa neurones do not favour a major involvement of ENK-positive myenteric neurones in the control of gastric mucosa activity.  相似文献   

9.
Although neurons containing neuronal nitric oxide synthase (NOS) are abundant in the myenteric plexus of the small intestine of all mammalian species examined to date, NOS-containing neurons are sparse in the submucous plexus, and there does not appear to be an innervation of the mucosa by nerve fibres containing NOS. In this study, we used immunohistochemical techniques to examine the presence of neuronal NOS in the mouse intestine during development. At embryonic day 18 and postnatal day 0 (P0), about 50% of the neurons in the submucous plexus of the small intestine showed strong immunoreactivity to NOS, and NOS-immunoreactive nerve fibres were present in the mucosa. By P7, there was a gradation in the intensity of NOS immunostaining exhibited by submucosal neurons, varying from intense to extremely weak. During subsequent development, the proportion of submucous neurons showing NOS immunoreactivity decreased, and immunoreactive nerve fibres were no longer observed in the mucosa. In adult mice, NOS neurons comprised only 3% of neurons in the submucous plexus, which is significantly less than at P0. In contrast to the submucous plexus, the percentage of neurons that showed NOS immunoreactivity in the myenteric plexus did not change significantly during development.  相似文献   

10.
The presence of 5-hydroxytryptamine in enteric neurons of the guinea-pig distal colon was demonstrated by immunohistochemistry and the projections of the neurons were determined. 5-Hydroxytryptamine-containing nerve cells were observed in the myenteric plexus but no reactive nerve cells were found in submucous ganglia. Varicose reactive nerve fibres were numerous in the ganglia of both the myenteric and submucous plexuses, but were infrequent in the longitudinal muscle, circular muscle, muscularis mucosae and mucosa. Reactivity also occurred in enterochromaffin cells. Lesion studies showed that the axons of myenteric neurons projected anally to provide innervation to the circular muscle and submucosa and to other more anally located myenteric ganglia. The results suggest that a major population of 5-hydroxytryptamine neurons in the colon is descending interneurons, most of which extend for 10 to 15 mm in the myenteric plexus and innervate both 5-hydroxytryptamine and non-5-hydroxytryptamine neurons.  相似文献   

11.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

12.
The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.  相似文献   

13.
Neuroanatomical, electrophysiological and immunohistochemical techniques were used to describe correlations between soma morphology and electrophysiological properties in two groups of guinea-pig enteric neurones posing particular challenges. Lucifer Yellow-staining of 542 myenteric plexus neurones of duodenum revealed a great diversity of neuronal morphology. The distribution was: Dogiel Type I 27%, Dogiel Type II 54%, Stach Type IV 9%; 10% were unclassified. Correlations were sought in 59 of these cells between morphology and electrophysiological properties but no particular association was recognised. Dynorphin A(1-8)-like immunoreactivity (Dyn A(1-8)-IR) was found in up to 90% of identified submucous neurones of guinea-pig ileum. Of 62 S-neurones, 41 showed 'weak' and 19 had 'intense' Dyn A (1-8)-IR. There was no evidence of Dyn A(1-8)-IR in 2 S-neurones, nor in 8/8 AH-neurones. As for 11/16 vasoactive intestinal peptide- (VIP-) IR neurones, there was a strong correlation between the presence of 'weak' Dyn A(1-8)-IR and the occurrence of inhibitory (IPSPs) and slow excitatory synaptic potentials (EPSPs) (13/16 cells tested), which were never observed in neurones with 'intense' Dyn A(1-8)-IR (16/16) or neuropeptide Y (NPY)-IR (8/8). Similarly, 7/7 neurones with 'weak' Dyn A(1-8)-IR, but not those (7/7) with 'intense' Dyn A(1-8)-IR, hyperpolarised or showed a conductance change to noradrenaline. It was concluded that dynorphin A(1-8)-like-IR was contained in two populations of submucous neurone that are anatomically, immunohistochemically, electrophysiologically and pharmacologically distinct and closely related to those containing VIP and NPY. Furthermore, as in the myenteric plexus throughout the small intestine, opioid peptides are not expressed in Dogiel Type II cells.  相似文献   

14.
The motility patterns of the reticulorumen evoke mainly mixing of the ingesta. So far unknown, intrinsic neural circuits of the enteric nervous system are involved in the control of these motility patterns. The aim of the study was to characterize neurochemically sheep ruminal myenteric neurones, in particular the neural pathways innervating the ruminal muscle layers. Cell bodies within the myenteric plexus projecting to the longitudinal or circular muscle layer were retrogradely labelled by direct application of the fluorescent tracer 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) onto the circular or longitudinal muscle. The neurochemical code of myenteric neurones was identified by their immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). According to their neurochemical code, ruminal myenteric neurones were divided into three populations: ChAT/SP (68% of all myenteric neurones), NOS/VIP (26% of all myenteric neurones) and ChAT/- (5% of all myenteric neurones). Application of DiI onto the circular or longitudinal muscle revealed on average 64 or 44 labelled cell bodies in the myenteric plexus, respectively. DiI-labelled neurones expressed the code ChAT/SP or NOS/VIP. In the pathways to circular or longitudinal muscle, ChAT/SP-positive neurones outnumbered NOS/VIP-immunoreactive neurones by 5:1 and 2:1. Pathways to the circular or longitudinal muscle did not exhibit any pronounced polarized innervation patterns. This study demonstrated specific projections of myenteric neurones to the ruminal muscle. Neurones expressing the code ChAT/SP might function as excitatory muscle motor neurones, whereas NOS/VIP neurones are likely to act as inhibitory muscle motor neurones.  相似文献   

15.
Immunohistochemical techniques were used to examine the presence and co-localisation of a range of putative neurotransmitters and other neuronal markers in the myenteric plexus of the small and large intestine of the mouse. Distinct sub-populations of myenteric neurons were identified, based on the combinations of substances they contained and the distribution of their fibres. In the small intestine, there were two major classes of circular muscle motor neurons; one class was characterised by the presence of nitric oxide synthase, vasoactive intestinal peptide plus neuropeptide Y (NOS/VIP/NPY), and the second class contained calretinin plus substance P (CalR/SP). There were seven classes of neurons that innervated myenteric ganglia; these contained NOS, VIP, NOS/VIP, NPY, CalR/calbindin (CalB), SP or 5-HT. In the large intestine, there were five major classes of motor neurons that contained NOS, NOS/VIP, GABA, SP, or CalR/SP, and seven major classes of neurons that innervated myenteric ganglia and contained NOS, VIP, CalR/CalB, CalR, SP, GABA or 5-HT. Although some aspects of the patterns of co-localisation are similar to those in other species, this study re-inforces recent analyses that indicate significant species differences in neurochemical patterns in the enteric neurons of different species. Received: 28 August 1995 / Accepted: 30 November 1995  相似文献   

16.
The colocalisation of choline acetyltransferase (ChAT) with markers of putative intrinsic primary afferent neurons was determined in whole-mount preparations of the myenteric and submucosal plexuses of the rat ileum. In the myenteric plexus, prepared for the simultaneous localisation of ChAT and nitric oxide synthase (NOS), all nerve cells were immunoreactive (IR) for ChAT or NOS, but seldom for both; only 1.6 +/- 1.8% of ChAT-IR neurons displayed NOS-IR and, conversely, 2.8 +/- 3.3% of NOS-IR neurons were ChAT-IR. In preparations double labelled for NOS-IR and the general nerve cell marker, neuron-specific enolase, 24% of all nerve cells were immunoreactive for NOS, indicating that about 75% of all nerve cells have ChAT-IR. All putative intrinsic primary afferent neurons in the myenteric plexus, identified by immunoreactivity for the neurokinin 1 (NK1) receptor and the neurokinin 3 (NK3) receptor, were ChAT-IR. Conversely, of the ChAT-IR nerve cells, about 45% were putative intrinsic primary afferent neurons (this represents 34% of all nerve cells). The cell bodies of putative intrinsic primary afferent neurons had Dogiel type II morphology and were also immunoreactive for calbindin. All, or nearly all, nerve cells in the submucosal plexus were immunoreactive for ChAT. About 46% of all submucosal nerve cells were immunoreactive for both neuropeptide Y (NPY) and calbindin; 91.8 +/- 10.5% of NPY/calbindin cells were also ChAT-IR and 99.1 +/- 0.7% were NK3 receptor-IR. Of the nerve cells with immunoreactivity for ChAT, 44.3 +/- 3.8% were NPY-IR, indicating that about 55% of submucosal nerve cells had ChAT but not NPY-IR. Only small proportions of the ChAT-IR, non-NPY, nerve cells had NK3 receptor or calbindin-IR. It is concluded that about 45% of submucosal nerve cells are ChAT/calbindin/NPY/VIP/NK3 receptor-IR and are likely to be secretomotor neurons. Most of the remaining submucosal nerve cells are immunoreactive for ChAT, but their functions were not deduced. They may include the cell bodies of intrinsic primary afferent neurons.  相似文献   

17.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

18.
Vasoactive Intestinal Peptide (VIP) neurons are maturing during suckling and weaning periods and the neuropeptide VIP is thought to be neurotrophic during ontogenesis. We have previously demonstrated that suckling rats with myenteric ablation have significantly higher mitotic index and an increase on villus height and crypt depth 15 days after treatment. In the current study, we measured the area of VIP neurons of submucous plexus in the ileum of weanling rats, in which myenteric neurons were ablated by serosal application of benzalkonium chloride (BAC). The area of VIP immunoreactive cell bodies, reconstructed under confocal microscope, was significantly increased in response to denervation. This result suggests that the myenteric plexus may have an inhibitory role over submucous plexus in the normal intestine. The enhanced production of VIP may be correlated with the increased epithelial proliferation induced by denervation in a critical period of life, from suckling to weaning time.  相似文献   

19.
The myenteric plexus of the gastrointestinal tract was investigated in the obese diabetic mouse, an animal model of human type 2 diabetes. Sections were immunostained by the avidin-biotin complex method, using a general nerve marker, protein gene product 9.5 (PGP 9.5), as well as antibodies to several important neurotransmitters. Computerized image analysis was used for quantification. When diabetic mice were compared with controls, no difference was found in the density of PGP 9.5-immunoreactive (IR) nerve fibres in antrum, duodenum or colon. In antrum and duodenum, diabetic mice showed a decreased number of vasoactive intestinal peptide (VIP)-IR neurons in myenteric ganglia as well a decreased relative volume density in myenteric plexus (though not significantly in antrum, p=0.073). No difference was found regarding VIP-IR nerves in colon. The volume density of nitric oxide synthase (NOS)-IR nerve fibres was decreased in antrum and duodenum of diabetic mice, whereas no difference was found in colon. The density of galanin-IR nerve fibres was decreased in duodenum. Whereas neuropeptide Y (NPY)- and vesicular acetylcholine transporter (VAChT)-IR nerve fibres was increased in density in colon of diabetic mice, no difference was found in antrum and duodenum. Regarding substance P, there was no difference between diabetic and control mice in antrum, duodenum or colon. The present study shows that gut innervation is affected in this animal model of human type 2 diabetes. It is possible that the present findings may have some relevance for the gastrointestinal dysfunctions seen in patients with type 2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号