首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   63篇
  2023年   4篇
  2022年   3篇
  2021年   17篇
  2020年   7篇
  2019年   16篇
  2018年   25篇
  2017年   17篇
  2016年   45篇
  2015年   48篇
  2014年   55篇
  2013年   54篇
  2012年   70篇
  2011年   73篇
  2010年   47篇
  2009年   36篇
  2008年   78篇
  2007年   52篇
  2006年   49篇
  2005年   41篇
  2004年   44篇
  2003年   34篇
  2002年   43篇
  2001年   16篇
  2000年   7篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   9篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1983年   4篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
  1927年   1篇
排序方式: 共有983条查询结果,搜索用时 31 毫秒
1.
2.

Background  

Staphylococcus aureus, a major human pathogen causes a wide range of disease syndromes. The most dangerous are methicillin-resistant S. aureus (MRSA) strains, resistant not only to all β-lactam antibiotics but also to other antimicrobials. An alarming increase in antibiotic resistance spreading among pathogenic bacteria inclines to search for alternative therapeutic options, for which resistance can not be developed easily. Among others, photodynamic inactivation (PDI) of S. aureus is a promising option. Photodynamic inactivation is based on a concept that a non toxic chemical, called a photosensitizer upon excitation with light of an appropriate wavelength is activated. As a consequence singlet oxygen and other reactive oxygen species (e.g. superoxide anion) are produced, which are responsible for the cytotoxic effect towards bacterial cells. As strain-dependence in photodynamic inactivation of S. aureus was observed, determination of the molecular marker(s) underlying the mechanism of the bacterial response to PDI treatment would be of great clinical importance. We examined the role of superoxide dismutases (Sod) in photodynamic inactivation of S. aureus as enzymes responsible for oxidative stress resistance.  相似文献   
3.
Insulins and C-peptides were extracted and purified from bison and fox pancreatic glands. The insulins were reduced and pyridylethylated, and the derived A- and B-chains separated by HPLC. Amino acid sequence determinations of the pyridylethylated A- and B-chains proved bisontine insulin to be identical to bovine insulin and fox insulin to be identical to dog and porcine insulin. Bisontine C-peptide proved to be identical to bovine C-peptide. The isolated fox C-peptide comprises 23 amino acid residues and probably represents a major tryptic fragment of a larger C-peptide. The fox C-peptide fragment is identical to the dog C-peptide (9-31) except for residue 3 (residue 11 in the dog C-peptide), which is aspartic acid as compared with glutamic acid in the dog C-peptide.  相似文献   
4.
J Majewski  F M Cohan 《Genetics》1998,148(1):13-18
In Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.  相似文献   
5.
6.
Creeping bentgrass (Agrostis stolonifera L.) is the most widely utilized cool-season turf species for intensively managed sports playing surfaces, including bowling greens and golf course putting greens, tees, and fairways. One of the biggest disease problems affecting creeping bentgrass is dollar spot disease caused by Sclerotinia homoeocarpa F.T. Bennett. Relative to traditional food crops, little attention has been paid to applying molecular technology to traditional creeping bentgrass breeding programs. The objective of this study was to develop a PCR-based linkage map of creeping bentgrass and identify quantitative trait loci (QTLs) associated with dollar spot resistance. Mapping populations segregating for dollar spot resistance were created, phenotyped for disease resistance, and genotyped for simple sequence repeat, conserved intron scanning primer, intron length polymorphism, and amplified fragment length polymorphism markers. As expected, 14 linkage groups (LGs) were detected for each parental map, covering a total of 1,424 and 1,374 cM for the 7418-3 and the L93-10 parental maps, respectively. A total of eight QTL regions (23 markers) for dollar spot resistance were observed for three isolates (Crenshaw, PRG, and UMass1) in our creeping bentgrass mapping populations. LGs 1, 4, and 5 contained at least two overlapping QTL regions to different isolates, indicating that these regions may play a significant role in dollar spot resistance. Identification of QTLs associated with disease resistance will help to facilitate marker-assisted selection in traditional creeping bentgrass breeding programs.  相似文献   
7.
Interactions between ecological communities of herbivores and microbes are commonly mediated by a shared plant. A tripartite interaction between a pathogenic fungus-host plant-herbivorous insect is an example of such mutual influences. In such a system a fungal pathogen commonly has a negative influence on the morphology and biochemistry of the host plant, with consequences for insect herbivore performance. Here we studied whether the biotrophic fbngus Podosphaera ferruginea, attacking the great burnet Sanguisorba officinalis, affects caterpillar performance of the endangered scarce large blue butterfly Phengaris teleius. Our results showed that the pathogenic ftmgus affected the number and size of inflorescences produced by food-plants and, more importantly, had in direct, plant-mediated effects on the abun dance, body mass and immune response of caterpillars. Specifically, we found the relationship between caterpillar abundance and variability in inflorescence size on a plant to be positive among healthy food-plants, and negative among infected food-plants. Caterpillars that fed on healthy food-plants were smaller than those that fed on infected food-plants in one studied season, while there was no such difference in the other season. We observed the relationship between caterpillar immune response and the proportion of infected great burnets within a habitat patch to be positive when caterpillars fed on healthy food-plants, and negative when caterpillars fed on infected food-plants. Our results suggest that this biotrophic fungal infection of the great burnet may impose a significant indirect influence on P. teleius caterpillar performance with potential consequences for the population dynamics and structure of this endangered butterfly.  相似文献   
8.
9.
BackgroundObesity is a worldwide epidemic with more than 600 million affected individuals. Human studies have demonstrated some alterations in brains of otherwise healthy obese individuals and elevated risk of neurodegenerative disease of old age; these studies have also pointed to slightly diminished memory and executive functions among healthy obese individuals. Similar findings were obtained in animal models of obesity induced by high fat diet. On the other hand, low carbohydrate high fat diets are currently promoted for losing weight (e.g., Atkin’s style diets). However, the long-term effects of such diets are not known. Additionally, high fat diets leading to (mild) ketonemia were shown to improve brain function in elderly humans and in some animal models.AimTo evaluate the hypothesis that long-term use of a high fat diet was associated with decreases in spatial memory, smaller hippocampi and hippocampi metabolite concentrations in Wistar rats.MethodsTwenty five male Wistar rats were put on high fat diet (HFD; 60% calories from fat, 30% from carbohydrates) on their 55th day of life, while 25 control male rats (CONs) remained on chow. Adequate levels of essential nutrients were provided. Both groups underwent memory tests in 8-arm radial maze at 3rd, 6th, 9th, and 12th month. 1H magnetic resonance spectroscopy was employed to measure concentrations of tNAA (marker of neuronal integrity) at one month and one year, whereas MRI was used to evaluate hippocampal volumes.ResultsObese rats (OBRs) consumed similar amount of calories as CONs, but less proteins. However, their protein intake was within recommended amounts. Throughout the experiment OBRs had statistically higher concentrations of blood ketone bodies than CONs, but still within normal values. At post-mortem assessment, OBRs had 38% larger fat deposits than CONs (p<0.05), as evaluated by volume of epididymis fat, an acknowledged marker of fat deposits in rats. Contrary to our expectations, OBRs had better scores of memory behavioral tasks than CONs throughout the experiment. At one year, their hippocampi were by 2.6% larger than in CONs (p = 0.05), whereas concentration of tNAA was 9.8% higher (p = 0.014).ConclusionLong-term HFD in our study resulted in better memory, larger hippocampal volumes, as well as higher hippocampal metabolite concentrations, possibly due to increased levels of blood ketone bodies. The results should be interpreted with caution, as results from animal models do not necessarily directly translate in human condition.  相似文献   
10.
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号