首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5105篇
  免费   495篇
  2023年   18篇
  2022年   15篇
  2021年   73篇
  2020年   63篇
  2019年   65篇
  2018年   83篇
  2017年   86篇
  2016年   125篇
  2015年   228篇
  2014年   279篇
  2013年   342篇
  2012年   428篇
  2011年   429篇
  2010年   304篇
  2009年   267篇
  2008年   359篇
  2007年   366篇
  2006年   338篇
  2005年   315篇
  2004年   294篇
  2003年   275篇
  2002年   246篇
  2001年   39篇
  2000年   39篇
  1999年   49篇
  1998年   75篇
  1997年   33篇
  1996年   46篇
  1995年   44篇
  1994年   52篇
  1993年   35篇
  1992年   27篇
  1991年   18篇
  1990年   18篇
  1989年   18篇
  1988年   12篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   13篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
排序方式: 共有5600条查询结果,搜索用时 203 毫秒
1.
2.
  相似文献   
3.
4.
5.
Effects of chemical modification of lysine residues in trypsin   总被引:3,自引:0,他引:3  
Chemical modifications are a simple method to identify and modify functional determinants of enzymes. In the case of serine proteases, it is possible to induce characteristics which are advantageous for peptide synthesis. In this work, we investigated the influence of guanylation and succinylation of lysine residues on the S′-subsite specificity, the catalytic behavior and stability of trypsin. We have found, that succinylation leads to an about 10-fold better acceptance of basic residues in P1′, whereas guanylation shows no remarkable effects. Furthermore, guanylation enhances, succinylation reduces the general enzyme–substrate interactions in P2′. The structural fundamentals of these specificity changes are discussed. The catalytic behavior of trypsin was not influenced by guanylation and succinylation but an enhancement of the stability against autolytic processes by introducing additional negative charges into the protein was observed.  相似文献   
6.
7.
8.
In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO2 conditions or other metabolic strategies which can increase the carbon flux from CO2 to metabolic pools. However, even under optimal CO2 conditions plants will provide much more NADPH + H+ and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP+ would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called “alternative electron cycling” which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non-photochemical quenching or photorespiration appear in a quite new perspective, especially when discussing strategies to improve the solar energy conversion into plant biomass.  相似文献   
9.
10.
This study investigates morphological adaptations of rat extensor digitorum longus muscle to chronic low-frequency stimulation (10 Hz, 10 h/d, up to 61±7d). During the early stimulation period (2–4 d), increased basophilia and accumulation of RNA were seen predominantly in type-IIB fibers. Putative satellite cell activation, as indicated by 3H-thymidine incorporation, was also evident during this phase. By 12 d, fiber composition remained unaltered, but there was a decrease in the cross-sectional area of the type-IIB fibers. Following 28 d of low-frequency stimulation, the percentage of type-IIB fibers decreased from 43±3% to 0%, while type-IID fibers increased from 30±3% to 60±6%. The fraction of type-IIA fibers tended to increase (controls 19±3%; stimulated 29±4%), whereas that of the type-I fibers was unaltered (4±1%). At this time, the cross-sectional area of type-IID fibers was unaltered, but that of type-IIA and type-I fibers increased. Further stimulation resulted in a return of type-IID fibers to control levels (23±5%), and a marked increase in type-IIA fibers (45±8%). The percentage of type-I fibers increased from 4±1% to 8±1%. Throughout each stage of chronic stimulation, there was no histological evidence of fiber degeneration and regeneration. These results indicate that, in contrast to the rabbit, chronic low-frequency stimulation-induced fiber conversion in the rat extensor digitorum longus muscle is entirely due to fiber transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号