首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
解聚作用是控制土壤有机氮矿化和氮素有效性供应的关键,然而氮沉降对亚热带森林土壤有机氮解聚作用的影响机制尚不明确。以福建戴云山黄山松林为研究对象,设置对照(CT)、低氮(LN)和高氮(HN)3个氮添加水平,进行为期2年的氮沉降模拟试验。通过分析土壤化学性质、微生物生物量和土壤8种有机氮解聚酶活性的变化,探究土壤有机氮解聚作用响应氮沉降的机理过程。结果表明:短期氮添加显著增加0-10 cm和10-20 cm土层矿质氮含量,并显著增加了10-20 cm土层微生物生物量碳(MBC)的含量。同时,0-10 cm土壤锰过氧化物酶活性随氮添加量增加而显著提高,HN处理下土壤漆酶活性显著高于LN和CT;10-20 cm土壤的酸性蛋白酶、碱性蛋白酶、中性蛋白酶和漆酶活性均随氮添加量增加而显著提高,但是谷氨酰胺酶活性变化相反。冗余分析表明两个土层有机氮解聚酶活性影响因素不同,土壤硝态氮(NO3--N)是0-10 cm土层有机氮解聚酶活性的主要影响因素,而10-20 cm土层有机氮解聚酶活性由NO3--N和MBC共同影响。综上所述,亚热带黄山松林土壤不同有机氮解聚酶对氮添加的响应不一致,主要受土壤NO3--N和MBC调节。该研究有助于拓宽土壤氮循环对氮沉降的响应机理,同时对维持土壤有效氮含量和提高黄山松生态系统生产力具有重要意义。  相似文献   

2.
刘鑫军  魏洪杰 《广西植物》2022,42(7):1077-1087
土壤氮(N)的有效性是影响土壤微生物群落结构以及土壤氮循环的重要因子。为探索N添加对樟子松人工林氮素转化及N功能基因(NFGs)表达的影响及其作用机制,该文以塞罕坝千层板林场的樟子松人工林为研究对象,进行了2年的氮添加处理,设置4个不同氮添加水平0、1、5、10 g N·m-2·a-1,分别记作N0、N1、N5、N10,采用功能基因微阵GeoChip 5.0系统及室内土壤培养法,探讨了土壤NFGs对氮添加的反应及其对氮转化过程的影响。结果表明:(1)与N0相比,中低N添加处理(N1、N5)促进了氨化(ureCnirAnrfA)、硝化(amoA)和反硝化(norB)相关基因的相对丰度,高N处理(N10)则抑制了所有NFGs的表达。(2)相关分析表明,N1、N5的促进作用与土壤有机碳(SOC)、硝态氮(NO3--N)和微生物生物量碳(MBC)显著相关,N10处理显著降低了所有氮转化过程NFGs的相对丰度,这种负面影响与溶解性有机碳(DOC)、MBC含量的减少有关。(3)与氮转化基因丰度规律趋势相似,N1和N5处理显著增加了净N硝化、净N矿化以及N2O的排放速率,但N10促进作用不明显,表明氮添加对氮转化的促进作用存在阈值。(4)多元回归分析进一步表明,amoA-AOB和MBC是影响净N硝化的关键因素,ureCnirK和MBC是影响净氮矿化的关键因素,narGnirS是影响N2O排放的关键因素。综上,N添加可提高促进樟子松人工林的氮转化及提高部分特定酶功能基因的相对丰度,但氮添加水平存在阈值,当施用10 g N·m-2·a-1时,氮转化受到抑制,添加5 g N·m-2·a-1是促进樟子松人工林土壤N转化的较佳水平。  相似文献   

3.
在森林土壤中,无机氮的垂直移动速率较快,因此大气氮沉降极有可能对下层森林土壤造成较大影响,且表层土壤往往与下层土壤的物理化学特性和所处环境差异较大,因此土壤剖面中不同深度的土壤对大气氮沉降的响应可能存在较大差异。以往研究表明,"华西雨屏"区的年均氮湿沉降量高达95 kg N hm-2 a-1,处于中国最高水平,该森林生态系统出现一定氮饱和特征。基于以上背景,研究华西雨屏区常绿阔叶林不同深度土壤氮矿化及相关酶活性对模拟氮沉降的响应,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g N hm-2 a-1)、低氮(LN,+5 g N hm-2 a-1)和高氮(HN,+15 g N hm-2 a-1)3个氮添加水平。在氮沉降进行5年后进行土壤采样,测定不同深度土壤(上层0-15 cm、中层15-30 cm、下层30-45 cm)全氮(TN)、硝态氮(NO3--N)、铵态氮(NH4+-N)含量及氮矿化相关酶活性。结果表明:(1)该常绿阔叶次生林不同深度土壤TN有显著差异;(2)模拟氮沉降对该系统土壤氮矿化总体表现出极显著抑制作用,其中中层土壤抑制作用最为强烈,净氮矿化速率主要受硝化过程的影响;(3)氮矿化相关酶活性均随土壤深度的加深而降低,模拟氮沉降对土壤脲酶活性有极显著促进作用,对土壤硝酸还原酶活性有显著抑制作用。由于无机氮在土壤剖面中的高度可移动性,深层土壤氮循环和特征对氮沉降的响应需要更加密切的关注。  相似文献   

4.
探明热带森林土壤反硝化微生物群落结构及多样性,对于理解反硝化引起的N2O排放及缓解全球变暖具有重要意义。本研究以西双版纳3个不同恢复阶段热带森林类型[即白背桐(Mallotus paniculatus,MP)、崖豆藤(Millttia leptobotrya,ML)群落、群落及高檐蒲桃(Syzygium oblatum,SO)群落]为研究对象,揭示土壤nirS型反硝化微生物群落组成及多样性的干湿季变化,分析热带森林恢复过程中土壤理化环境变化对nirS型反硝化细菌群落的影响。结果表明,变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)相对丰度表现为恢复前期高于恢复后期,而脱氯单胞菌属(Dechloromonas)、嗜盐单胞菌属(Halomonas)和罗思河小杆菌属(Rhodanobacter)表现为恢复后期高于恢复前期;绿弯菌门(Chloroflexi)和放线菌门(Actinobacteria)均随恢复年限增加而增加,而贪铜菌属(Cupriavidus)和假单胞菌属(Pseudomonas)的相对丰度表现为随恢复年限增加而降低。9月份各样地新检测出的属数量表现为:SO (19种) > MP (13种) > ML (7种)。土壤nirS型反硝化微生物群落的Shannon多样性指数表现为:高檐蒲桃群落 > 崖豆藤群落 > 白背桐群落,且9月(湿季) > 3月(干季)。相关分析表明,热带森林恢复引起土壤N库(全氮、NH4+、NO3-)、C有效性(微生物量碳、易氧化碳)及微气候(土壤含水率与温度)的改变,能够显著影响nirS型反硝化细菌群落的结构及多样性。主成分分析结果表明,土壤硝态氮、微生物量碳、全氮及易氧化碳是调控不同恢复阶段热带森林土壤nirS型反硝化细菌群落结构及多样性变化的主控因子,其次为土壤水分、温度、水解氮、pH、铵态氮、有机碳、容重及C/N。  相似文献   

5.
王全成  郑勇  宋鸽  金圣圣  贺纪正 《生态学报》2021,41(15):6245-6256
氮(N)沉降深刻影响着森林生态系统的生物多样性、生产力和稳定性。亚热带地区森林土壤磷(P)的有效性较低,N沉降将更突显P的限制作用。N、P输入对亚热带次级森林土壤的影响是否依赖于森林演替阶段知之甚少。选取两种不同演替年龄阶段(年轻林:<40 a;老年林:>85 a)的亚热带常绿阔叶林,设置模拟N和/或P沉降(10 g m-2 a-1)4个处理(Ctrl、N、P、NP),连续处理4.5年后采集表层、次表层和下底层(0-15、15-30、30-60 cm)土壤样品,综合分析了土壤微生物生物量碳(MBC)氮(MBN)和多种土壤养分含量。结果表明,MBC、MBN及土壤养分含量均随土壤深度增加而降低。N添加对两种演替阶段森林土壤中MBC和MBN均无显著影响。施P相关处理(P和NP)对年轻林表层土壤MBC和MBN无显著影响,但显著增加了老年林表层土壤MBC和MBN(P<0.05),表明老年林可能比年轻林更易受P限制。N添加显著增加了两种演替森林表层土壤可溶性有机氮(DON)、氨态氮(NH4+-N)和硝态氮(NO3--N)的含量(P<0.05);P相关处理(P和NP)显著增加两种演替阶段表层和次表层土壤速效磷(AP)以及表层土壤全磷(TP)的含量(P<0.05)。土壤MBC和MBN与土壤中各养分指标(可溶性有机碳DOC、DON、NH4+-N、NO3--N、AP、全碳TC、全氮TN和TP)呈显著正相关关系,土壤TC、TN和DOC是影响土壤微生物生物量的主要因子。研究可为评估和揭示未来全球环境变化背景下不同演替林龄亚热带森林的土肥潜力及土壤质量的演变提供一定的科学理论依据。  相似文献   

6.
我国亚热带地区是全球氮沉降的热点区域。氮沉降会影响氨氧化微生物的丰度和群落结构,进而改变土壤微生物驱动的养分循环。目前对新近发现的完全氨氧化菌认识不足,极大地制约了对森林土壤氨氧化微生物响应氮沉降的整体认识。本研究以福建省三明市辛口镇格氏栲自然保护区长期模拟氮沉降处理土壤为研究对象,利用实时定量PCR方法,研究氨氧化微生物(包括氨氧化细菌AOB、氨氧化古菌AOA和完全氨氧化菌comammox Nitrospira),尤其是完全氨氧化菌的amoA基因丰度。模拟氮沉降处理包括:不添加N(CK)、低氮(添加40 kg N·hm-2·a-1,LN)和高氮(添加80 kg N·hm-2·a-1,HN)。结果表明: 8年的氮添加降低了土壤pH值和有机碳含量,提高了土壤硝态氮含量。供试土壤的AOB丰度低于检测限,无法获得目的片段。高氮处理显著提高了AOA丰度,但对完全氨氧化菌clade A和clade B丰度无显著影响。两种氮添加处理均降低了完全氨氧化菌/AOA值,表明氮添加降低了完全氨氧化菌在亚热带森林土壤氨氧化微生物类群中的相对竞争力。针对完全氨氧化菌clade A和clade B的扩增都存在非特异性产物,表明针对森林土壤的高特异性和覆盖度设计引物的必要性。Clade A和clade B丰度与总氮和铵态氮含量呈显著正相关,clade B丰度还与有机碳含量呈显著正相关。总之,模拟氮沉降提高了AOA在亚热带米槠天然林土壤硝化过程中的相对重要性,这些发现可为该地区应对全球变化和氮沉降的风险评估提供理论依据。  相似文献   

7.
微生物介导的碳氮循环过程对全球气候变化的响应   总被引:10,自引:0,他引:10  
沈菊培  贺纪正 《生态学报》2011,31(11):2957-2967
土壤是地球表层最为重要的碳库也是温室气体的源或汇。自工业革命以来,对土壤温室气体的容量、收支平衡和通量等已有较多研究和估算,但对关键过程及其源/汇的研究却十分有限。微生物是土壤碳氮转化的主要驱动者, 在生态系统碳氮循环过程中扮演重要的角色,对全球气候变化有着响应的响应、适应及反馈,然而其个体数量,群落结构和多样性如何与气候扰动相互关联、进而怎样影响生态系统过程的问题仍有待进一步探索。从微生物介导的碳氮循环过程入手,重点讨论微生物对气候变化包括温室气体(CO2,CH4,N2O)增加、全球变暖、大气氮沉降等的响应和反馈,并由此提出削减温室气体排放的可能途径和今后发展的方向。  相似文献   

8.
以大兴安岭多年冻土区泥炭地为研究对象,通过室内模拟增温实验,研究温度升高对不同深度(0-150 cm)土壤氮循环功能基因丰度的影响。同时针对0-20 cm和20-40 cm土壤设置两个水分处理,分别为土壤原始含水量和淹水状态,研究水分变化对表层土壤氮循环功能基因丰度的影响。结果表明温度升高显著提高了活动层(0-60 cm)、过渡层(60-80 cm)、永冻层(80-100 cm)中nifH、nirK基因丰度,温度升高显著提高了活动层(0-40 cm)和过渡层(60-80 cm)中nirS基因丰度。温度升高显著提高了过渡层(60-80 cm)NH4+-N和较深永冻层(140-150 cm)NO3--N的含量,但降低了过渡层(60-80 cm)NO3--N和较深永冻层(120-150 cm)NH4+-N的含量,相关性分析表明,NH4+-N含量与nifH和nirS基因丰度呈显著正相关,NO3--N含量与nirK基因丰度呈显著正相关,说明温度升高能够通过改变微生物丰度促进过渡层固氮作用和反硝化作用。在增温条件下,淹水处理使表层土壤nirS和nirK基因丰度及NH4+-N含量降低,但提高了NO3--N含量,说明淹水造成了过度还原的条件使反硝化底物浓度降低,降低反硝化微生物活性进而抑制了土壤反硝化作用。该结果对于明确未来气候变化影响下冻土区泥炭地土壤氮循环过程具有重要意义。  相似文献   

9.
郑勇  贺纪正 《应用生态学报》2020,31(7):2464-2472
干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。  相似文献   

10.
氮素添加对贝加尔针茅草原土壤团聚体微生物群落的影响   总被引:1,自引:0,他引:1  
李明  赵建宁  秦洁  祁小旭  红雨  杨殿林  洪杰 《生态学报》2021,41(3):1127-1137
大气氮沉降增加作为全球气候变化的重要因素,其对土壤生态系统影响的研究受到了生态学家的广泛关注。土壤微生物是有机物分解和养分循环的主要参与者,在维持土壤的功能多样性和可持续发展方面发挥着重要的作用。氮沉降的激增会引起土壤微生物群落结构和功能的改变。土壤中营养物质在不同团聚体组分中分布的不均匀,为微生物提供了空间异质微生境。为揭示草原土壤不同粒径团聚体中微生物群落分布及其对氮素添加响应特征。自2010年起,在内蒙古贝加尔针茅草原典型地段设置N0(0 kg hm-2 a-1)、N15(15 kg hm-2 a-1)、N30(30 kg hm-2 a-1)、N50(50 kg hm-2 a-1)、N100(100 kg hm-2 a-1)、N150(150 kg hm-2 a-1)6个氮素添加处理模拟氮沉降野外控制试验。采用磷脂脂肪酸(phospholipid fatty acid,PLFA)法测定>2 mm、0.25-2 mm和<0.25 mm 3个粒径土壤团聚体中微生物PLFA含量,探讨氮素添加对土壤团聚体微生物群落结构的影响。结果表明:氮素添加提高了土壤碳、氮含量,降低了土壤pH。氮素添加显著提高了0.25-2 mm土壤团聚体微生物群落磷脂脂肪酸总量、真菌磷脂脂肪酸含量和真菌/细菌(Fungi/bacteria,F/B)、革兰氏阳性菌/革兰氏阴性菌(Gram-positive bacteria/gram-negative bacteria,G+/G-)的比值(P<0.05),降低了土壤团聚体微生物Margalef丰富度指数(P<0.05)。相关性分析表明,土壤团聚体微生物总PLFAs、真菌PLFAs含量、G+/G-、F/B与土壤有机碳、全氮含量呈显著正相关关系,与C/N值负相关。综合研究表明,连续8年氮素添加显著提高了土壤有机碳和全氮含量、降低了土壤pH;提高了0.25-2 mm土壤团聚体真菌群落,土壤有机碳、全氮的固持与真菌群落的增加有关。  相似文献   

11.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

12.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

13.
Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long‐term N fertilization experiment to explore the sensitivity of soil C to increased N in two N‐rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher Δ14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N‐rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long‐term stability of this added C will likely depend on future changes in temperature.  相似文献   

14.
It is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of 13C-labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu) than the PE of glucose (PEglu). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C-acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEglu increased as C-acquiring enzyme activity increased, whereas the PEcellu increased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEglu by affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcellu by affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long-term regulation of the soil PE.  相似文献   

15.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

16.
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.  相似文献   

17.
土壤微生物作为土壤养分的生物驱动因素,氮沉降会改变其活性和生物量,从而打破土壤养分循环动态平衡。氮沉降对热带、亚热带森林以及温带原始林生态系统土壤微生物量影响的研究较多,但对温带天然次生林影响的研究鲜有报道。于2016年5月(春)、7月(夏)和9月(秋)分别对长白山模拟10年氮沉降的控制试验样地——白桦山杨次生林进行了野外调查。控制试验分为3个氮添加处理,对照(CK 0 kg N hm~(-2)a~(-1))、低氮(LN 25 kg N hm~(-2)a~(-1))和高氮(HN 50 kg N hm~(-2)a~(-1)),按照土壤层(0—10 cm和10—20 cm)分别测试了不同处理的土壤微生物量碳(MBC)和氮(MBN)、土壤全碳(TC)、全氮(TN)和全磷(TP)、p H、土壤可溶性有机碳(DOC)和氮(DON)等指标。结果表明:1)土壤p H在氮沉降的作用下显著降低;上层土壤TC、TN在氮沉降下变化较小,下层土壤TC、TN的含量显著增加;氮沉降下春、夏两季土壤TP含量上升,LN处理在秋季对TP有抑制作用;氮沉降对DOC、DON的影响不显著。2)上层土壤MBC春季到秋季呈现递减的趋势,下层土壤呈现先升后降的趋势,HN对MBC有抑制作用,LN对下层土壤MBC有促进作用;土壤MBN由春季到秋季呈现递减的趋势,且上、下层土壤MBN差异显著;氮处理对春、秋两季MBN有促进作用,夏季有抑制作用;氮沉降使春、秋两季MBC/MBN降低,夏季土壤MBC/MBN升高。3)氮处理、季节变化和土层深度对MBC、MBN存在显著影响,其交互影响也显著。总之,长期氮沉降在生长季对土壤微生物量的影响具有季节性差异,且受到土层深度的影响。未来研究在重视年际变化的同时,也要注重时空动态对氮沉降作用表现出的差异性。  相似文献   

18.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

19.
亚热带丛枝菌根与外生菌根森林对土壤氮循环的影响   总被引:1,自引:0,他引:1  
菌根真菌能促进植物获取氮素从而调节土壤氮循环过程,但不同类型菌根影响土壤氮循环的特征尚待更多研究.本试验选择中国亚热带典型次生林植被,设置丛枝菌根(AM)和外生菌根(ECM)树种优势样地,对比分析两种菌根类型森林土壤氮状态的差异,以探究菌根类型影响土壤氮循环的可能作用机制.结果 表明,AM与ECM森林的土壤总氮和铵态氮...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号