首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Circadian clocks play a fundamental role in biology and disease. Much has been learned about the molecular underpinnings of these biological clocks from genetic studies in model organisms, such as the fruit fly, Drosophila melanogaster. Here we review the literature from our lab and others that establish a role for the protein kinase CK2 in Drosophila clock timing. Among the clock genes described thus far, CK2 is unique in its involvement in plant, fungal, as well as animal circadian clocks. We propose that this reflects an ancient, conserved function for CK2 in circadian clocks. CK2 and other clock genes have been implicated in cellular responses to DNA damage, particularly those induced by ultraviolet (UV) light. The finding of a dual function of CK2 in clocks and in UV responses supports the notion that clocks evolved to assist organisms in avoiding the mutagenic effects of daily sunlight.  相似文献   

2.
3.
Hogenesch JB  Herzog ED 《FEBS letters》2011,585(10):1427-1434
Circadian clocks are present in most organisms and provide an adaptive mechanism to coordinate physiology and behavior with predictable changes in the environment. Genetic, biochemical, and cellular experiments have identified more than a dozen component genes and a signal transduction pathway that support cell-autonomous, circadian clock function. One of the hallmarks of biological clocks is their ability to reset to relevant stimuli while ignoring most others. We review recent results showing intracellular and intercellular mechanisms that convey this robust timekeeping to a variety of circadian cell types.  相似文献   

4.
Abstract

Circadian clocks are endogenous time keeping mechanisms that drive near 24-h behavioural, physiological and metabolic rhythms in organisms. It is thought that organisms possess circadian clocks to facilitate coordination of essential biological events to the external day and night (extrinsic advantage) so as to enhance Darwinian fitness. However, on Earth, there are a number of habitats that are not subject to such robust daily cycling of geo-physical factors. Do organisms living under such conditions exhibit rhythmic behaviours that are driven by endogenous circadian clocks? We attempt to critically survey studies of rhythms (or the lack of them) in organisms living in a range of constant environments. Many such organisms do show rhythms in behaviour and/or physiological variables. We suggest that such presence of rhythms may be indicative of an underlying clock that facilitates, (a) internal synchrony among rhythms, and (b) temporal partitioning of incompatible cellular processes (intrinsic advantage). We then highlight reasons that limit our interpretations about the presence (or absence) of clocks in such organisms living under constant conditions, and suggest possible methods to conclusively test whether or not rhythms in these organisms are driven by endogenous circadian clocks with the hope that it may enhance our understanding of circadian clocks in organisms under constant environments.  相似文献   

5.
Circadian rhythms represent a type of cellular regulation common to most eukaryotes. Analysis of the genetic basis of this phenomenon is beginning to provide information about how clocks function at the molecular level. Surprisingly, the first two cloned 'clock genes', one from a fruit fly and one from a fungus, share some common characteristics both genetically and in the nature of the proteins they encode. In related work, the recent identification and molecular analysis of clock-controlled genes is revealing how biological clocks control gene expression, and may pave the way for the isolation of novel 'clock genes' in the future.  相似文献   

6.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

7.
Circadian (daily) biological clocks express characteristics that are difficult to explain by known biochemical mechanisms, and will ultimately require characterizing the structures, functions, and interactions of their molecular components. KaiC is an essential circadian protein in cyanobacteria that forms the core of the KaiABC clock protein complex. We report the crystal structure of the KaiC homohexameric complex at 2.8 A resolution. The structure resembles a double doughnut with a central pore that is partially sealed at one end. The crystal structure reveals ATP binding, inter-subunit organization, a scaffold for Kai-protein complex formation, the location of critical KaiC mutations, and evolutionary relationships to other proteins. A key auto-phosphorylation site on KaiC (T432) is identified from the crystal structure, and mutation of this residue abolishes circadian rhythmicity. The crystal structure of KaiC will be essential for understanding this circadian clockwork and for establishing its links to global gene expression.  相似文献   

8.
Many biological processes are driven by biological clocks that, depending on the frequency they generate, are classified into ultradian, circadian and infradian oscillators. In virtually all light-sensitive organisms from cyanobacteria to humans, a circadian timing system adapts cyclic physiology to geophysical time. Recent evidence suggests that even in mammals circadian oscillators function in a cell-autonomous manner. In yeast, an ultradian oscillator regulates cyclic respiratory activity and global gene expression. Circadian oscillators and the ultradian yeast respiratory clock share at least four properties: they follow limit-cycle kinetics, interweave with cellular metabolism, are temperature-compensated and influence the cell division clock.  相似文献   

9.
Sleep and Biological Rhythms - Circadian rhythms are oscillations in behavior and physiological functions that are regulated by internal biological clocks. In mammals, the circadian rhythms can be...  相似文献   

10.
11.
Abstract

Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.  相似文献   

12.
13.
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.  相似文献   

14.
Circadian clocks, especially peripheral clocks, can be strongly entrained by daily feedings, but few papers have reported the effects of food components on circadian rhythm. The effects of resveratrol, a natural polyphenol, on circadian clocks of Rat-1 cells were analyzed. A dose of 100 muM resveratrol, which did not show cytotoxicity, regulated the expression of clock genes Per1, Per2, and Bmal1.  相似文献   

15.

Background  

Circadian clocks are internal daily time keeping mechanisms that allow organisms to anticipate daily changes in their environment and to organize their behavior and physiology in a coherent schedule. Although circadian clocks use temperature compensation mechanisms to maintain the same pace over a range of temperatures, they are also capable of synchronizing to daily temperature cycles. This study identifies key properties of this process.  相似文献   

16.
17.
18.
19.
Circadian clocks, especially peripheral clocks, can be strongly entrained by daily feedings, but few papers have reported the effects of food components on circadian rhythm. The effects of resveratrol, a natural polyphenol, on circadian clocks of Rat-1 cells were analyzed. A dose of 100 μM resveratrol, which did not show cytotoxicity, regulated the expression of clock genes Per1, Per2, and Bmal1.  相似文献   

20.
Circadian clocks have been described in organisms ranging in complexity from unicells to mammals, in which they function to control daily rhythms in cellular activities and behavior. The significance of a detailed understanding of the clock can be appreciated by its ubiquity and its established involvement in human physiology, including endocrine function, sleep/wake cycles, psychiatric illness, and drug tolerances and effectiveness. Because the clock in all organisms is assembled within the cell and clock mechanisms are evolutionarily conserved, simple eukaryotes provide appropriate experimental systems for dissecting the clock. Significant progress has been made in deciphering the circadian system in Neurospora crassa using both genetic and molecular approaches, and Neurospora has contributed greatly to our understanding of (1) the feedback cycle that comprises a circadian oscillator, (2) the mechanisms by which the clock is kept in synchrony with the environment, and (3) the genes that reside in rhythmic output pathways. Importantly, the lessons learned in Neurospora are relevant to our understanding of clocks in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号