首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
姜国勇  杨仁崔 《病毒学报》2003,19(4):365-370
Tm-2^2基因在烟草上的转化和表达表明,Tm-2^2基因在同科不同属植物体上的功能没有改变。在两种类型的纯合转化体上,Tm-2^2基因编码蛋白能够抗Tobamovirus属5种不同的毒株,并能被ToMV-2a毒株感染而失去抗病性。这个结果表明:移动蛋白上的氨基酸变异能够影响R蛋白对ToMV的应答反应。Tm-2^2基因转化体在不同启动子的调控下,对ToMV-2a毒株感染所表现的症状不同,说明启动子在Tm-2^2基因的抗病反应中具有非常重要的作用。  相似文献   

2.
番茄的抗病基因Tm -2 2 与番茄花叶病毒 (ToMV)的移动蛋白MP基因是一对互作的基因 ,Tm- 2 2 基因和ToMV MP基因同时在烟草中表达 ,并分别获得单一基因整合的纯合转化体植株。病毒接种试验表明 ,Tm -2 2 基因转化体与Tm- 2 2 番茄对Tobamavirus病毒的特异抗性结果一致 ;Tm -2 2 转基因植株和ToMV MP转基因植株杂交试验及其农杆菌注射试验均证明 :(1)Tm -2 2 基因与ToMV- MP在转基因烟草上保持“基因对基因”的互作关系 ;(2 )在外源乙烯的参与下 ,ToMV的移动蛋白与Tm -2 2 基因编码蛋白的互作能够诱导转化体程序性细胞死亡。这一结果为今后研究Tm -2 2 与MP互作的分子机制奠定了基础。  相似文献   

3.
番茄的抗病基因Tm22与番茄花叶病毒(ToMV)的移动蛋白MP基因是一对互作的基因,Tm22基因和ToMVMP基因同时在烟草中表达, 并分别获得单一基因整合的纯合转化体植株。病毒接种试验表明,Tm22基因转化体与Tm22番茄对Tobamavirus病毒的特异抗性结果一致;Tm22转基因植株和ToMVMP转基因植株杂交试验及其农杆菌注射试验均证明: (1)Tm22基因与ToMVMP在转基因烟草上保持“基因对基因"的互作关系; (2)在外源乙烯的参与下,ToMV的移动蛋白与Tm22基因编码蛋白的互作能够诱导转化体程序性细胞死亡。这一结果为今后研究Tm22与MP互作的分子机制奠定了基础。  相似文献   

4.
番茄的Tm-2nv基因是一个NBS-LRR类型的病毒抗性基因.本研究以该基因的保守序列作为扩增引物,对辣椒栽培种朝天椒的基因组DNA进行电子分析、同源扩增和表达验证,首次获得了具有70%相似性的同源基因.生物信息学分析显示,朝天椒Tm-2nv-like基因的N端289~300 nt处和316~333 nt处分别含有12和18个碱基的插入,并且含有一个ATP/GTP结合位点的基序A(P-loop),以及3个依赖于cAMP和cGMP的蛋白激酶磷酸化位点.这一结果对于辣椒抗病基因功能的研究具有重要意义.  相似文献   

5.
水稻乙烯受体类似物基因的克隆及其表达特性   总被引:4,自引:0,他引:4  
乙烯在植物的生长发育以及对逆境的反应中起着重要作用. 乙烯受体基因在拟南芥、 烟草和番茄等双子叶植物中已有一些研究, 但到目前为止还没有见到关于单子叶植物乙烯受体研究的报道. 我们从水稻中克隆了一个乙烯受体基因OSPK2, 发现它所编码的蛋白与双子叶植物的乙烯受体有所不同. OSPK2的N端较长, 其后是3个跨膜区、一个GAF结构域、一个推测的激酶结构域和接受器结构域. 虽然大多数的结构域都是保守的, 但预期的磷酸化位点His和磷酸基团接受位点Asp在OSPK2中分别被Gln和Asn取代. 这一事实说明, OSPK2可能不是以组氨酸激酶的磷酸转移方式进行作用, 而是以其他的机制, 如具有丝/苏激酶的活性. 应用RT-PCR方法对不同条件下OSPK2基因的表达进行了研究, 结果表明, OSPK2受伤害和PEG处理诱导, 但盐及ABA处理对其没有显著影响. OSPK2基因的差异表达可能反映了它在介导不同非生物逆境反应中的作用, 这与我们以前关于烟草乙烯受体的研究结果是一致的.  相似文献   

6.
利用多重PCR反应同时筛选番茄Cf-9和Tm-1基因   总被引:3,自引:0,他引:3  
利用同一PCR反应体系,对分别与番茄抗叶霉病的Cf-9基因和抗番茄烟草花叶病毒病的Tm-1基因紧密连锁的PCR标记进行了同时扩增筛选,扩增的特异性片段与单引物扩增片段吻合。其中与Cf-9基因紧密连锁的CAPs标记在抗感试材均可扩增出560bp的特异片段,且都存在TaqⅠ酶切位点,抗病基因型酶切后分别产生了450bp、330bp和290bp的不同特异性片段,而感病基因型试材酶切后产生450bp和290bp的特异性片段;与Tm-1基因紧密连锁的SCAR标记为显性标记,只有抗病试材产生750bp的特异片段,不能被TaqⅠ酶切。经反复验证,结果稳定准确,可用于在同一PCR反应体系中对两个抗病基因进行同时筛选鉴定。该体系的建立不仅省时、省工、节省费用,而且可用于苗期辅助选育,加快番茄抗病育种进程。  相似文献   

7.
转Bt基因抗虫玉米的研究   总被引:3,自引:0,他引:3  
对转Bt基因抗虫玉米的研究概况、转化方法、转化体的鉴定方法、遗传评价以及其存在的问题进行了综述.  相似文献   

8.
研究了Ca2+ 对番茄(Lycopersicon esculentum Mill cv. Lichun)黄化幼苗乙烯反应的影响.通过测定不同Ca2+ 浓度条件下番茄黄化幼苗的"三重反应"、内源乙烯释放量、乙烯受体基因NEVER-RIPE(NR)表达量及胞内CaM含量的变化,结果发现,随着培养基中Ca2+ 浓度从0 mmol/L增加到3.8 mmol/L,番茄黄化幼苗的"三重反应"表型明显增强,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加;当Ca2+ 浓度由3.8 mmol/L进一步增加到10 mmol/L时,番茄黄化幼苗"三重反应"表型受到抑制,内源乙烯释放量、 NR基因的表达量及胞内CaM的含量都有所下降.因此,Ca2+ 对番茄黄化幼苗"三重反应"的影响与Ca2+ 调节内源乙烯合成和乙烯受体基因的表达有关,而且Ca2+ 可能是通过CaM含量的变化来调节乙烯作用的.  相似文献   

9.
钙与植物乙烯反应的关系研究   总被引:5,自引:0,他引:5  
研究了Ca2 对番茄 (LycopersiconesculentumMillcv.Lichun)黄化幼苗乙烯反应的影响。通过测定不同Ca2 浓度条件下番茄黄化幼苗的“三重反应”、内源乙烯释放量、乙烯受体基因NEVER_RIPE(NR)表达量及胞内CaM含量的变化 ,结果发现 ,随着培养基中Ca2 浓度从 0mmol/L增加到 3.8mmol/L ,番茄黄化幼苗的“三重反应”表型明显增强 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加 ;当Ca2 浓度由 3.8mmol/L进一步增加到 10mmol/L时 ,番茄黄化幼苗“三重反应”表型受到抑制 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有所下降。因此 ,Ca2 对番茄黄化幼苗“三重反应”的影响与Ca2 调节内源乙烯合成和乙烯受体基因的表达有关 ,而且Ca2 可能是通过CaM含量的变化来调节乙烯作用的  相似文献   

10.
根据Ⅰ-2的基因序列设计特异扩增引物对Ⅰ-2/5F和Ⅰ-2/5R,扩增Ⅰ-2基因3 132~3 765 bp之间片段,基因型为Ⅰ-2/Ⅰ-2的材料03F-7可扩增出633 bp的条带.而基因型为I-2/I-2的材料Moneymaker可扩增出693 bp的条带,杂合型材料可扩增出以上2个条带.通过这两个特异扩增片段的克隆和测序证明,抗病材料扩增的633 bp片段为Ⅰ-2基因的3 132~3 765 bp之间的序列,而感病等位基因中出现大量的碱基突变和60 bp片段插入.利用引物对Ⅰ-2/5F和Ⅰ-2/5R,可区分纯合抗病材料、杂合抗病材料和纯合感病材料,从而建立了Ⅰ-2基因的共显性分子标记.在此基础上,利用该标记对16个主要番茄品种进行基因型鉴定,8个品种含有,Ⅰ-2基因,其中1个品种基因型为Ⅰ-2/Ⅰ-2,其他品种为Ⅰ-2/I*2.通过一次PCR和一次HindⅢ酶切建立了Ⅰ-2和Tm-22双基因检测体系,为多基因鉴定及标记辅助选择提供了有力工具.  相似文献   

11.
In tomato, infections by tomato mosaic virus are controlled by durable Tm-22 resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-22 resistance gene and the susceptible allele, tm-2. The Tm-22 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-22 gene survive. The Tm-22 locus consists of a single gene that encodes an 861 amino acid polypeptide, which belongs to the CC-NBS-LRR class of resistance proteins. The putative tm-2 allele was cloned from susceptible tomato lines via PCR with primers based on the Tm-22 sequence. Interestingly, the tm-2 gene has an open reading frame that is comparable to the Tm-22 allele. Between the tm-2 and the Tm-22 polypeptide 38 amino acid differences are present of which 26 are located in the second half of the LRR-domain. Susceptible tomato plants, which were transformed with the Tm-22 gene, displayed resistance against ToMV infection. In addition, virus specificity, displayed by the Tm-22 resistance was conserved in these transgenic lines. To explain the durability of this resistance, it is proposed that the Tm-22-encoded resistance is aimed at the Achilles' heel of the virus.  相似文献   

12.
To gain an insight into the processes underlying disease resistance and its durability, the durable Tm-2(2) resistance gene was compared with the broken Tm-2 resistance gene. The Tm-2 gene of tomato could be isolated via PCR with primers based on the Tm-2(2) sequence. The Tm-2 gene, like the Tm-2(2) gene, encodes an 861 amino acid polypeptide, which belongs to the coiled coil/nucleotide binding site/leucine-rich repeat class of resistance proteins. The functionality and the nature of the isolated Tm-2 gene were confirmed by introducing the gene under the control of the 35S promoter into tomato mosaic virus-susceptible tobacco. This transgenic tobacco was crossed with transgenic tobacco plants producing the movement protein (MP)-authenticated MP as the Avr protein of the Tm-2 resistance. The Tm-2(2) and Tm-2 open reading frames only differ in seven nucleotides, which on a protein level results in four amino acid differences, of which two are located in the nucleotide binding site and two are located in the leucine-rich repeat domain. The small difference between the two proteins suggests a highly similar interaction of these proteins with the MP, which has major implications for the concept of durability. Comparison of the two resistance-conferring alleles (Tm-2 and Tm-2(2)) with two susceptible alleles (tm-2 and lptm-2) allowed discussion of the structure-function relationship in the Tm-2 proteins. It is proposed that the Tm-2 proteins display a partitioning of the leucine-rich repeat domain, in which the N-terminal and C-terminal parts function in signal transduction and MP recognition, respectively.  相似文献   

13.
Young ND  Zamir D  Ganal MW  Tanksley SD 《Genetics》1988,120(2):579-585
The Tm-2a gene of tomato confers resistance to the viral pathogen, tobacco mosaic virus. Like many economically important plant genes, Tm-2a has been characterized phenotypically and by classical linkage analysis, yet nothing is known about its gene product. We report here the isolation of two DNA clones which are very tightly linked to the Tm-2a gene. These clones were identified by testing 122 genomic clones as hybridization probes against Southern blots consisting of DNA from pairs of nearly isogenic lines with or without the Tm-2a gene. Screening such a large number of clones in a short period of time was facilitated by co-labeling and simultaneous probing of sets of up to 10 random genomic clones. Tightly linked clones were distinguished by the fact that they exhibited one or more restriction fragment length polymorphisms between the nearly isogenic lines. Tight linkage of the clones with Tm-2a was verified in a segregating F(2) population. Both mapped to the same locus 0.4 +/- 0.4 centimorgans away from Tm-2a and may provide starting points for a genomic ;;walk' to this gene. Due to the availability of isogenic lines in many plant species, the strategy outlined in this paper should be widely applicable for selecting DNA clones tightly linked to genes of interest.  相似文献   

14.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   

15.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

16.
With the ultimate goal of cloning the Tobacco Mosaic Virus (TMV) resistance gene Tm-2a from tomato by means of positional cloning, a high-resolution map of a 4.3-cM region surrounding the Tm-2a gene has been constructed. In total, 13 RFLP and RAPD markers were mapped in close proximity to Tm-2a using 2112 individuals from an intraspecific Lycopersicon peruvianum backcross. The closest flanking markers were separated from Tm-2a by 0.05 cM on each side. Only one marker, the cDNA clone R12, co-segregated with Tm-2a. In order to physically cover the Tm-2a region, R12 and the flanking DNA marker TG207 were used to select homologous YAC clones. To-date, two YAC-contigs spanning approximately 340 kb and 360 kb have been constructed. The data obtained from these experiments indicate that recombination around the centromere of chromosome 9 is extremely suppressed.  相似文献   

17.
The Tm-2 gene of tomato and its allelic gene, Tm-22, confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-22, Tm-22 confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-22. Although resistance induced by Tm-2 and Tm-22 is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-22 induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-22 but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-22 is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-22 are involved in HR cell death.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号