首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
角质细胞生长因子 2 (KGF 2 )也叫成纤维细胞生长因子 10 (FGF 10 ) ,是成纤维细胞生长因子家族的一员 .能特异性促进上皮细胞的增殖、分化和迁移 ,对脊椎动物多种组织和器官的发育起重要调控作用 ,对临床上多种疾病的治疗也有很好的应用前景 .1 KGF 2与受体KGF 2有两种细胞膜表面受体 :FGFR1Ⅲb和FGFR2Ⅲb .KGF 2与FGFR2Ⅲb的亲和力很高 ,而与FGFR1Ⅲb的亲和力很低 ,只有在高浓度KGF 2存在时才与FGFR1Ⅲb结合 .KGF 2与受体结合后 ,促使受体胞内的C端酪氨酸残基磷酸化 ,磷酸化的受体具有了酪氨酸蛋白激酶活性 ,并与一系…  相似文献   

2.
角质细胞生长因子研究进展   总被引:4,自引:0,他引:4  
角质细胞生长因子(KGF)属于成纤维细胞生长因子家族,它通过与受体(KGFR)的结合,特异性地刺激上皮细胞的增殖.KGF基因表达受到正负调控作用,正负调控作用的平衡对于KGF正常发挥功能具有重要意义.KGF具有多种生物学功能:参与组织、器官的发育,具有损伤防治功能,与癌症的发生有着密切的联系.  相似文献   

3.
角质细胞生长因子研究进展   总被引:10,自引:0,他引:10  
邵寒娟  陈亮  林涛 《生命科学》2004,16(1):27-30
角质细胞生长因子(KGF)从属于成纤维细胞生长因子家族。KGF基因表达受多种细胞因子调控。KGF与受体KGFR特异性的结合发挥其多种生物学功能:参与组织、器官的发育;参与皮肤、胃、肠、肾、膀胱、肺等上皮的损伤修复;减少放、化疗所带来的副作用,具有损伤防护功能;KGF与肿瘤密不可分。  相似文献   

4.
角质细胞生长因子及其对消化道损伤的防治作用   总被引:1,自引:0,他引:1  
角质细胞生长因子(KGF)是成纤维细胞生长因子家族的一员,它通过与KGF受体(KGFR)的结合,特异性地刺激上皮细胞的增殖,对皮肤、胃、肠、肾、膀胱、肺等上皮的损伤有修复作用,能减少放、化疗所带来的副作用。目前研究较多的是KGF对消化道损伤的防护以及损伤后的治疗作用。  相似文献   

5.
角质细胞生长因子(KGF)是成纤维细胞生长因子(FGFs)家族的成员,即FGF-7,最初是从人胚胎肺成纤维细胞的培养上清中分离纯化获得的。成熟KGF为一163个氨基酸残基的单链多肽,分子量为26—28KD。KGF由各种来源的间质细胞分泌,受体分布于上皮细胞,其生物学活性是特异性地促进上皮细胞的增殖、迁移和分化。KGF的表达受激素和一些细胞因子的调控。有关研究表明,KGF对肺泡Ⅱ型细胞的增殖以及皮肤、胃肠道粘膜和角膜损伤的修复具有十分重要的作用。  相似文献   

6.
角质细胞生长因子(KGF)是成纤维细胞生长因子(FGFs)家族的成员,即FGF-7,最初是从人胚胎肺成纤维细胞的培养上清中分离纯化获得的。成熟KGF为一163个氨基酸残基的单链多肽,分子量为26-28KD。KGF由各种来源的间质细胞分泌,受体分布于上皮细胞,其生物学活性是特异性地促进上皮细胞的增殖、迁移和分化。FGF的表达受激素和一些细胞因子的调控。有关研究表明,KGF对肺泡Ⅱ型细胞的增殖以及皮肤、胃肠道粘膜和角膜损伤的修复具有十分重要的作用。  相似文献   

7.
成纤维细胞生长因子在骨修复中的作用和应用   总被引:4,自引:0,他引:4  
成纤维细胞生长因子 ( FGF)是一类与肝素有高亲和性的多聚肽 ,最初根据它能刺激成纤维细胞再生而命名。现已发现有 1 8个成员 ,即 FGF1- FGF18。目前研究得最多的是 FGF1和 FGF2 。根据它们等电点 ( PI)的不同 ,FGF1又称为酸性成纤维细胞生长因子 ( a FGF,PI为 5 .6) ,FGF2 又称为碱性成纤维细胞生长因子 ( b FGF,PI为 9.6) ,它们均通过自分泌和 /或旁分泌途径在组织修复中发挥重要作用。成纤维细胞生长因子受体 ( FGFR)属于免疫球蛋白超家族成员 ,目前已确定了 4种由独立基因编码的人 FGFR。它们是一种跨膜蛋白质 ,分为细…  相似文献   

8.
人成纤维细胞生长因子受体(FGFRs)家族在细胞的增殖、分化、血管生成、胚胎及骨骼发育和在与生长发育相关的进程中起着十分重要的作用。成纤维细胞生长因子受体2(FGFR2)是该家族4个成员中的一员,本文就其结构特点及与骨骼发育、肿瘤形成和其他疾病的关系加以综述。  相似文献   

9.
成纤维细胞生长因子研究进展   总被引:14,自引:0,他引:14  
成纤维细胞生长因子(FGF)家族至少有七个成员,有些成员是原癌基因的产物。它们对多种细胞的生长与分化具有调节作用。该家族存在两类受体,高亲和力受体具有酷氨酸蛋白激酶活性,低亲和力受体为肝素受体。FGF对神经生长因子、血小板衍生生长因子的表达有一定调控作用。  相似文献   

10.
成纤维细胞生长因子受体4(fibroblast growth factor receptor4,FGFR4)是成纤维细胞生长因子受体家族中较晚被发现的一类跨膜酪氨酸激酶受体,通过与成纤维细胞生长因子结合,启动PLC、Ras等多条信号转导途径将胞外信号传递到细胞内,主要参与胚胎发育、血管生成、创伤愈合、组织分化和修复等重要生理进程,对乳腺癌、肝癌等癌症的发生发展起着重要作用,并成为癌症前期极好的预测因子及治疗学中的有效靶点。本文主要概述了FGFR4的信号转导过程及病理学研究进展。  相似文献   

11.
The keratinocyte growth factor receptor or fibroblast growth factor receptor 2b (KGFR/FGFR2b) is activated by the specific interaction with the keratinocyte growth factor (KGF/FGF7), which targets the receptor to the degradative pathway, and the fibroblast growth factor 10 (FGF10/KGF2), which drives the receptor to the juxtanuclear recycling route. Hrs plays a key role in the regulation of the endocytic degradative transport of ubiquitinated receptor tyrosine kinases, but the direct involvement of this protein in the regulation of FGFR endocytosis has not been investigated yet. We investigated here the possible role of Hrs in the alternative endocytic pathways of KGFR. Quantitative immunofluorescence microscopy and biochemical analysis showed that both overexpression and siRNA interference of Hrs inhibit the KGF-triggered KGFR degradation, blocking receptor transport to lysosomes and causing its rapid reapparance at the plasma membrane. In contrast, the FGF10-induced KGFR targeting to the recycling compartment is not affected by Hrs overexpression or depletion. Coimmunoprecipitation approaches indicated that Hrs is recruited to KGFR only after KGF treatment, although it is not tyrosine phosphorylated by the ligand. In conclusion, Hrs regulates the KGFR degradative pathway, but not its juxtanuclear recycling transport. In addition, the results suggest that Hrs recruitment to the receptor, but not its ligand-induced phosphorylation, could be required for its function.  相似文献   

12.
Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family (also known as FGF-7), is an important protective factor for epithelial cells. The receptor for KGF (also called FGFR2-IIIb), which has intrinsic tyrosine kinase activity, is expressed specifically on epithelial cells and in the lung epithelium. Administration of KGF has been shown to protect the lung from various insults, but the mechanism of protection is not well understood. To understand the mechanism by which KGF exerts protective functions on epithelial cells, we used the yeast two-hybrid assay to identify proteins that interact with the KGF receptor (KGFR). Here we show that the cytoplasmic domain of KGFR interacts with p21-activated protein kinase (PAK) 4, which is a new member of the PAK family. The PAKs are regulated by the Rho-family GTPases Rac and Cdc42. PAK4 is the most divergent member of the PAK family of proteins and may have distinct functions. However, stimuli that regulate PAK4 activity are not known. Our data show that PAK4 can associate with the KGFR, which is dependent on KGFR tyrosine kinase activity. We show that a dominant negative mutant of PAK4 blocks KGF-mediated inhibition of caspase-3 activation in epithelial cells subjected to oxidant stress. Our data demonstrate that PAK4 is an important mediator of the anti-apoptotic effects of KGF on epithelial cells.  相似文献   

13.
Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motogenic for keratinocytes, and exert their action by binding to the keratinocyte growth factor receptor (KGFR), a splicing variant of FGFR2, exclusively expressed on epithelial cells. Here we analyzed the possible role of cortactin, an F-actin binding protein which is tyrosine phosphorylated by Src and is involved in KGFR-mediated cell migration, in the KGFR endocytosis and polarization to the leading edge of migrating cells upon ligand-induced stimulation. Biochemical phosphorylation study revealed that both KGF and FGF10 were able to induce tyrosine phosphorylation of Src and in turn of cortactin, as demonstrated by using the specific pharmacological Src-inhibitor SU6656, although FGF10 effect was delayed with respect to that promoted by KGF. Immunofluorescence analysis demonstrated the polarized localization of KGFR upon ligand stimulation to the leading edge of migrating keratinocytes, process that was regulated by Src. Moreover, we showed that the colocalization of cortactin with KGFR at the plasma membrane protrusions and on early endosomes after KGF and FGF10 treatment was Src-dependent. Further, by using a RNA interference approach through microinjection, we showed that cortactin is required for KGFR endocytosis and that the clathrin-dependent internalization of the receptor is a critical event for its polarization. Finally, KGFR expression and polarization enhanced cell migration in a scratch assay. Our results indicate that both Src and cortactin play a key role in the KGFR endocytosis and polarization at the leading edge of migrating keratinocytes, supporting the crucial involvement of RTK trafficking in cell motility.  相似文献   

14.
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.  相似文献   

15.
Keratinocyte growth factor/fibroblast growth factor-7 (KGF/FGF-7) is an established paracrine mediator of hormone-regulated epithelial growth and differentiation. In all organs studied, KGF is uniquely expressed in cells of mesenchymal origin. To determine whether KGF and its receptor, keratinocyte growth factor receptor (KGFR) or fibroblast growth factor receptor-2IIIb, were expressed in the porcine uterus as a potential paracrine system mediating progesterone action, we cloned KGF and KGFR partial cDNAs from the porcine endometrium. KGF and KGFR expression was detected in endometrium by Northern blot hybridization. Interestingly, in situ hybridization results demonstrated that KGF was expressed by endometrial epithelia and was particularly abundant between Days 12 and 15 of the estrous cycle and pregnancy. KGF secretion into the lumen of the porcine uterus was also detected on Day 12 of the estrous cycle and pregnancy. KGFR was expressed in both endometrial epithelia and conceptus trophectoderm. These novel findings suggest that KGF may act on the uterine endometrial epithelium in an autocrine manner and on the conceptus trophectoderm in a paracrine manner in the pig, which is the only species possessing a true epitheliochorial type of placentation.  相似文献   

16.
The endocytic pathway followed by the keratinocyte growth factor receptor   总被引:1,自引:1,他引:0  
Keratinocyte growth factor (KGF/FGF7) acts specifically on epithelial cells and regulates their proliferation and differentiation. It binds to and activates a receptor tyrosine kinase, the KGF receptor (KGFR), which is a splicing variant of the fibroblast growth factor receptor 2. The endocytic pathway followed by KGF and its receptor was analyzed here using immunofluorescence and confocal microscopy. After 10 min of internalization at 37 degrees C, both KGF and its receptor were localized in early endosomes, and after 30-60 min of endocytosis ligand and receptor were seen to reach perinuclear late endosomes and not the recycling endosomal compartment. Parallel western blot analysis revealed that KGFRs were tyrosine phosphorylated both at early and late steps of internalization, suggesting that KGF and KGFR remain associated in active complexes through the endocytic pathway. Pulse-chase experiments showed that the internalized KGFRs underwent degradation detectable at 1 h of endocytosis at 37 degrees C, indicating that KGFRs are functionally downregulated.  相似文献   

17.
In normal prostate, keratinocyte growth factor (KGF), also known as fibroblast growth factor-7 (FGF-7) serves as a paracrine growth factor synthesized in stromal cells that acts on epithelial cells through its receptor, KGFR. KGF and KGFR were found in human cancer epithelial cells as well as stromal cells. Since KGF expressed in epithelial cells of benign prostatic hyperplasia (BPH) and in prostate cancer, it has been suggested that KGF might act as an autocrine factor in BPH and prostate cancer. To investigate the roles of KGF in cancerous stroma, primary cultured human prostate cancer stromal cells (PCSCs) were isolated and evaluated. These PCSCs possessed estrogen receptors and KGFR, but not androgen receptor as determined by RT-PCR and Western blot, respectively. KGF exhibited mitogenic and anti-apoptotic effects that correlated with induction of cyclin-D1, Bcl-2, Bcl-xL and phospho-Akt expression in PCSCs, where treatment with KGF antiserum abolished cell proliferation and anti-apoptotic protein expression. PCSCs exposed to KGF for various time periods resulted in phosphorylation of Akt and subsequent up-regulation of Bcl-2. KGF modulated dynamic protein expression indicated that KGF triggered cell cycle machinery and then activated anti-apoptotic actions in PCSCs. Cell proliferation analysis indicated that tamoxifen or ICI 182,780 reduced cell viability in a dose-dependent manner; however, KGF prevented this inhibition, which further demonstrated KGF triggered anti-apoptotic machinery through activating Bcl-2 and phospho-Akt expression. In summary, KGF has an autocrine effect and serves as a survival factor in primary cultured human prostate cancer stromal cells.  相似文献   

18.
Keratinocyte growth factor (KGF) is a member of the heparin-binding fibroblast growth factor family (FGF-7) with a distinctive pattern of target-cell specificity. Studies performed in cell culture suggested that KGF was mitogenically active only on epithelial cells, albeit from a variety of tissues. In contrast, KGF was produced solely by cells of mesenchymal origin, leading to the hypothesis that it might function as a paracrine mediator of mesenchymal-epithelial communication. Biochemical analysis and molecular cloning established that the KGF receptor (KGFR) was a tyrosine kinase isoform encoded by the fgfr-2 gene. Many detailed investigations of KGF and KGFR expression in whole tissue and cell lines largely substantiated the pattern initially perceived in vitro of mesenchymal and epithelial distribution, respectively. Moreover, functional assays in organ culture and in vivo and studies of KGF regulation by sex sterorid hormones reinforced the idea that KGF acts predominantly on epithelial cells to elicit a variety of responses including proliferation, migration and morphogenesis.  相似文献   

19.
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.  相似文献   

20.
The keratinocyte growth factor receptor (KGFR) is a member of the fibroblast growth factor receptor (FGFR) superfamily. The proximal signaling molecules of FGFRs are much less characterized compared with other growth factor receptors. Using the yeast two-hybrid assay, we have identified ribosomal S6 kinase (RSK) to be a protein that associates with the cytoplasmic domain of the KGFR. The RSK family of kinases controls multiple cellular processes, and our studies for the first time show association between the KGFR and RSK. Using a lung-specific inducible transgenic system we have recently demonstrated protective effects of KGF on the lung epithelium and have demonstrated KGF-induced activation of the prosurvival Akt pathway both in vivo and in vitro. Here we show that a kinase inactive RSK mutant blocks KGF-induced Akt activation and KGF-mediated inhibition of caspase 3 activation in epithelial cells subjected to oxidative stress. It was recently shown that RSK2 recruits PDK1, the kinase responsible for both Akt and RSK activation. When viewed collectively, it appears that the association between the KGFR and RSK plays an important role in KGF-induced Akt activation and consequently in the protective effects of KGF on epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号