首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Tachykinins such as SP (substance P) may be involved in the progression of gastric adenocarcinoma through binding to NK-1 receptor. However, the existence and relationship between SP and gastric cancer progression and differentiation remained unknown. We have studied the NK-1 receptor in human gastric cancer tissue and MKN45 cell line and found SP-containing nerve fibres in human gastric cancer and found that the amounts of SP-positive nerves were related to gastric cancer differentiation. SP could promote proliferation, adhesion, migration and invasion of MKN45 cells in vitro. In addition, the intracellular calcium level of MKN45 cells was elevated after SP stimulation, and administration of CRACs (calcium release-activated calcium channels) inhibitor SKF-96365 could partially abolish these effects induced by SP. These results demonstrated that NK-1 receptor and SP-containing nerves existed in human gastric cancer; SP positive nerves may play an important role in human gastric cancer progression, and calcium is critically significant among SP-induced biological effects.  相似文献   

2.

Background

The aim of this study was to investigate the expression and prognostic significance of Uroplakin1A (UPK1A) in gastric adenocarcinoma patients. Functional studies were also analyzed in vitro.

Methodology/Principal Findings

Real-time quantitative PCR (RT-qPCR), western blotting, and immunohistochemical (IHC) staining methods were used to analyze the expression of UPK1A in primary gastric adenocarcinoma tissue samples. Compared with matched adjacent non-tumor, the expression of UPK1A in fresh surgical specimens was reduced, which was confirmed by RT-qPCR (P<0.01) and western blotting analysis (P<0.01). The paraffin specimens from a consecutive series of 445 gastric adenocarcinoma patients who underwent surgery between 2003 and 2006 were analyzed by IHC staining. The relationship between UPK1A expression, clinicopathological factors, and survival were evaluated. IHC staining analysis revealed that the reduced expression of UPK1A was observed in 224 cases (50.3%). Additionally, the correlation analysis of clinicopathological factors demonstrated that reduced expression of UPK1A was significantly associated with histological grade (P = 0.022), node metastasis (P<0.001) and tumor node metastasis (TNM) stage (P = 0.008) (7th edition of the International Union Against Cancer (UICC)). Furthermore, Kaplan-Meier survival analysis revealed that the reduced expression of UPK1A was significantly associated with poor prognosis (P = 0.043). Cox hazards model analysis indicated that UPK1A expression was an independent risk factor at the 0.1 level (P = 0.094). The function of UPK1A in cell cycle, migration, and invasion was investigated by overexpressing UPK1A in the MKN45 gastric cancer cell line. The elevated expression of UPK1A cells induced G1 phase arrest and significantly inhibited migration and invasion.

Conclusions/Significance

The reduced expression of UPK1A might play a role in the progression of gastric cancer. Thus, UPK1A could be a potential favorable biomarker associated with gastric cancer prognosis.  相似文献   

3.
Accumulating evidence suggests that a unique set of receptor tyrosine kinases, known as discoidin domain receptors (DDRs), plays a role in cancer progression by interacting with the surrounding collagen matrix. In this study, we investigated the expression and role of DDR1 in human gastric cancer metastasis. Proliferation, migration, invasion, and tube formation assays were conducted in DDR1-expressing MKN74 gastric cancer cells and corresponding DDR1-silenced cells. The effects of DDR1 on tumor growth and metastasis were examined in orthotopically implanted and experimental liver metastasis models in nude mice. The expression of DDR1 in surgical specimens was analyzed by immunohistochemistry. DDR1 was expressed in human gastric cancer cell lines, and its expression in human gastric tumors was associated with poor prognosis. Among seven gastric cancer cell lines, MKN74 expressed the highest levels of DDR1. DDR1-silenced MKN74 cells showed unaltered proliferation activity. In contrast, migration, invasion, and tube formation were significantly reduced. When examined in an orthotopic nude mouse model, DDR1-silenced implanted tumors significantly reduced angiogenesis and lymphangiogenesis, thereby leading to reductions in lymph node metastasis and liver metastasis. In a model of experimental liver metastasis, DDR1-silenced cells almost completely inhibited liver colonization and metastasis. DDR1 deficiency led to reduced expression of the genes encoding vascular endothelial growth factor (VEGF)-A, VEGF-C, and platelet-derived growth factor-B. These results suggest that DDR1 is involved in gastric cancer tumor progression and that silencing of DDR1 inhibits multiple steps of the gastric cancer metastasis process.  相似文献   

4.

Background

Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome.

Results

We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis.

Conclusions

We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.  相似文献   

5.
目的:探讨二氢杨梅素(DHM )对人胃癌MKN45细胞迁移和侵袭的作用及其分子机制。方法:培养人低分化胃癌MKN45细胞,用不同浓度的DHM(0,10,20,30,40,50 μmol/L)分别处理细胞24及48 h,每组实验重复3次,采用CCK8实验检测癌细胞增殖活力;划痕实验检测细胞迁移能力;Transwell小室检测细胞侵袭能力;免疫印迹分析细胞迁移和侵袭相关蛋白表达情况。结果:不同浓度DHM干预可降低MKN45细胞活力。20,30及40 μmol/L的DHM处理48 h可明显抑制细胞的迁移能力(P<0.01)和侵袭能力(P<0.05及0.01)。20及30 μmol/L的DHM处理48 h可增加E-cadherin蛋白表达(P<0.01)、降低Vimentin表达(P<0.01),从而逆转EMT过程;10,20及30 μmol/L的DHM处理48 h可明显降低pJNK的活性表达水平(P<0.05及0.01),及MMP-2蛋白表达(P< 0.01);JNK通路特异性抑制剂SP600125预处理可明显促进DHM对癌细胞侵袭能力的抑制作用(P<0.01)及降低MMP-2表达(P<0.01)。结论:DHM具有抑制人胃癌MKN45细胞的迁移及侵袭的作用,其机制可能与通过JNK通路下调MMP-2蛋白表达水平、逆转上皮间质转化有关。  相似文献   

6.
Twist, a newly found EMT-inducer, has been reported to be up-regulated in those of diffuse-type gastric carcinomas with high N-cadherin level. We show here MKN45, a cell line derived from undifferentiated carcinomas cells, expresses high levels of Twist. Down-regulation of Twist, using an antisense Twist vector in MKN45 cells, inhibits cell migration and invasion, companied with a morphologic changes associated with MET. Suppression of Twist also decreases the expressions of N-cadherin and fibronectin, but not of E-cadherin in MKN45. In contrast, overexpression of Twist in MKN28, a cell line derived from moderate differentiated carcinomas, results in up-regulation of N-cadherin and fibronectin, companied with down-regulation of E-cadherin. Taken together, our results suggest that Twist regulates cell motility and invasion in gastric cancer cell lines, probably through the N-cadherin and fibronectin production.  相似文献   

7.
Eukaryotic translation initiation factor 5A2 (EIF5A2) plays an important role in tumor progression and prognosis evaluation. However, little information is available about its potential role in gastric cancer. This study aimed to investigate the function of EIF5A2 in tumor progression and its potential mechanisms. EIF5A2 expression was measured in human gastric cancer cell lines, the immortalized gastric mucosal epithelial cell line (GES-1) and human gastric cancer tissues and knocked down by RNA interference or upregulated by EIF5A2 plasmid transfection. Cell proliferation, migration and invasion were assessed in vitro. The downstream targets of EIF5A2 were examined by western blotting. EIF5A2 and its potential target metastasis-associated protein 1 (MTA1) expression were examined in 160 pairs of human gastric cancer and adjacent non-tumor specimens using immunohistochemistry (IHC) staining, and its correlation with clinicopathological features and survival was investigated. Knockdown of EIF5A2 or MTA1 caused an apparent suppression of HGC27 cell proliferation, migration and invasion. After knockdown of EIF5A2 in HGC27 cells, E-cadherin levels were upregulated and vimentin, cyclin D1, cyclin D3, C-MYC and MTA1 levels were downregulated. Upregulation of EIF5A2 in MKN45 cells resulted in the converse. IHC results showed a positive correlation between EIF5A2 and MTA1 expression in gastric cancers (P<0.001). Both EIF5A2 and MTA1 overexpression were correlated with pT stage (P=0.018 and P=0.042), pN stage (P=0.037 and P=0.020) and lymphovascular invasion (P=0.016 and P=0.044). EIF5A2 or MTA1 overexpression was significantly associated with poor overall survival and disease-free survival (All P<0.05). Multivariate analyses identified EIF5A2 as an independent predictor for both overall survival (P=0.012) and disease-free survival (P=0.008) in gastric cancer patients. Our findings indicate that EIF5A2 upregulation plays an important oncogenic role in gastric cancer. EIF5A2 may represent a new predictor for poor survival and is a potential therapeutic target for gastric cancer.  相似文献   

8.
Helicobacter pylori infection has been suggested to stimulate expression of the NADPH oxidase 1 (Nox1)-based oxidase system in guinea pig gastric epithelium, whereas Nox1 mRNA expression has not yet been documented in the human stomach. PCR of human stomach cDNA libraries showed that Nox1 and Nox organizer 1 (NOXO1) messages were absent from normal stomachs, while they were specifically coexpressed in intestinal- and diffuse-type adenocarcinomas including signet-ring cell carcinoma. Immunohistochemistry showed that Nox1 and NOXO1 proteins were absent from chronic atrophic gastritis (15 cases), adenomas (4 cases), or surrounding tissues of adenocarcinomas (45 cases). In contrast, Nox1 and its partner proteins were expressed in intestinal-type adenocarcinomas (19/21 cases), diffuse-type adenocarcinomas (15/15 cases), and signet-ring cell carcinomas (9/9 cases). Confocal microscopy revealed that Nox1, NOXO1, Nox activator 1, and p22phox were predominantly associated with Golgi apparatus in these cancer cells, while diffuse-type adenocarcinomas also contained cancer cells having Nox1 and its partner proteins in their nuclei. Nox1-expressing cancer cells exhibited both gastric and intestinal phenotypes, as assessed by expression of mucin core polypeptides. Thus, the Nox1-base oxidase may be a potential marker of neoplastic transformation and play an important role in oxygen radical- and inflammation-dependent carcinogenesis in the human stomach.  相似文献   

9.
In Epstein-Barr virus (EBV)-infected gastric carcinoma, EBV-encoded BARF1 has been hypothesized to function as an oncogene. To evaluate cellular changes induced by BARF1, we isolated the full-length BARF1 gene from gastric carcinoma cells that were naturally infected with EBV and transfected BARF1 into EBV-negative gastric carcinoma cells. BARF1 protein was primarily secreted into culture supernatant and only marginally detectable within cells. Compared with gastric carcinoma cells containing empty vector, BARF1-expressing gastric carcinoma cells exhibited increased cell proliferation (P < 0.05). There were no significant differences in apoptosis, invasion, or migration between BARF1-expressing gastric carcinoma cells and empty vector-transfected cells. BARF1-expressing gastric carcinoma cells demonstrated increased nuclear expression of nuclear factor kappa B (NF-κB) RelA protein and increased NF-κB-dependent cyclin D1. The expression of p21WAF1 was diminished by BARF1 transfection and increased by NF-κB inhibition. Proliferation of naturally EBV-infected gastric carcinoma cells was suppressed by BARF1 small interfering RNA (siRNA) (P < 0.05). Immunohistochemical analysis of 120 human gastric carcinoma tissues demonstrated increased expression of cyclin D1 and reduced expression of p21WAF1 in EBV-positive samples versus EBV-negative gastric carcinomas (P < 0.05). In conclusion, the secreted BARF1 may stimulate proliferation of EBV-infected gastric carcinoma cells via upregulation of NF-κB/cyclin D1 and reduction of the cell cycle inhibitor p21WAF1, thereby facilitating EBV-induced cancer progression.  相似文献   

10.
Kang W  Tong JH  Chan AW  Lung RW  Chau SL  Wong QW  Wong N  Yu J  Cheng AS  To KF 《PloS one》2012,7(3):e33919
Stathmin1 (STMN1) is a candidate oncoprotein and prognosis marker in several kinds of cancers. This study was aimed to analyze its expression and biological functions in gastric cancer. The expression of STMN1 was evaluated by qRT-PCR, western blot and immunohistochemistry. The biological function of STMN1 was determined by MTT proliferation assays, monolayer colony formation and cell invasion assays using small interference RNA technique in gastric cancer cell lines. We also explored the regulation of STMN1 expression by microRNA-223. STMN1 was upregulated in gastric cancer cell lines and primary gastric adenocarcinomas. STMN1-positive tumors were more likely to be found in old age group and associated with p53 nuclear expression. In diffuse type gastric adenocarcinomas, STMN1 expression was correlated with age (p = 0.043), T stage (p = 0.004) and lymph node metastasis (p = 0.046). Expression of STMN1 in diffuse type gastric adenocarcinoma was associated with poor disease specific survival by univariate analysis (p = 0.01). STMN1 knockdown in AGS and MKN7 cell lines suppressed proliferation (p<0.001), reduced monolayer colony formation (p<0.001), inhibited cell invasion and migration ability (p<0.001) and induced G1 phase arrest. siSTMN1 could also suppress cell growth in vivo (p<0. 01). We finally confirmed that STMN1 is a putative downstream target of miR-223 in gastric cancer. Our findings supported an oncogenic role of STMN1 in gastric cancer. STMN1 might serve as a prognostic marker and a potential therapeutic target for gastric cancer.  相似文献   

11.
NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.  相似文献   

12.
DNA aneuploidy, p53 overexpression, and high cell proliferation frequently occur in gastric cancer. However, little is known about the time of their appearance throughout cancer progression. Therefore, the objective of the present study was to determine when such abnormalities occur during gastric cancer progression. We classified the gastric cancers examined into intestinal (n = 65) and diffuse (n = 34) types. DNA ploidy was examined using flow cytometry and expression of MIB-1 and p53 immunoreactivity were studied using the avidin-biotin complex method in three stages of gastric cancer (mucosal, submucosal, deeply invasive cancer, i.e., advanced cancer). The incidence of DNA aneuploidy in intestinal-type mucosal cancers (15/27, 55.6%) was lower than that of submucosal invasive cancers (14/16, 87.5%) or advanced cancers (19/22, 86.4%), while a low incidence of DNA aneuploidy was observed in each diffuse-type cancer group (mucosal, 1/12, 8.3%; submucosal invasive, 3/9, 33.3%; advanced, 8/14, 57.1%). Although overexpression of the p53 gene in intestinal-type cancer was found in early stage, that in diffuse-type cancer was observed in advanced stage. Among the intestinal-type mucosal cancers, the MIB-1 percent positive was higher in aneuploid tumors than diploid ones. DNA aneuploidy and overexpression of the p53 gene may play an important role in the early tumorigenesis of intestinal-type gastric cancer and in the late event of tumorigenesis of diffuse-type gastric cancer.  相似文献   

13.
DNA mapping of gastric cancers using flow cytometric analysis   总被引:2,自引:0,他引:2  
Although numerous studies of gastric cancers on DNA ploidy have been reported, differences in the degree of aneuploidy (DNA index, DI) during progression have not been identified. We attempted to chart the differences in DIs during progression to clarify the role of aneuploidy in gastric cancers. We classified the gastric cancers examined into intestinal (n = 88) and diffuse (n = 48) types, and then analyzed 136 gastric cancers (intramucosal cancer, 42; submucosal cancer, 39; advanced cancer, 55) by flow cytometry using multiple sampling. In addition, we examined the DNA ploidy pattern of mucosal and submucosal lesions using the same submucosal cancers to study the tumor progression in individual cancers. Intratumoral DNA differences in DNA ploidy were observed in both types of gastric cancers. In intestinal-type cancers, multiple subclones indicated by a different DI occurred during the early stage of gastric cancers, whereas in diffuse-type cancers, multiple subclones were found primarily in advanced cancers. Although the DI varied widely in early intestinal-type cancers between 1.0 and 2.0, in early diffuse-type cancers, the DI tended to be less than 1.2. However, in advanced stage gastric cancers, the DI distribution was similar for both histological types. In intestinal-type cancers, high DI (>1.3) aneuploidy was frequently found in mucosal lesions. In contrast, only low DI (<1.2) aneuploid clones were observed in mucosal lesions of diffuse-type cancers. The present results suggest that high DI aneuploid tumor clones in intramucosal cancers acquire invasive ability when they progress to submucosal cancers, whereas DNA aneuploidy itself plays an important role in submucosal invasion of diffuse-type cancers.  相似文献   

14.
15.
The aim of this study was to investigate the biological characteristics of the RASAL1 gene in a well-differentiated gastric cancer cell line MKN-28 and a poorly differentiated gastric cancer cell line BGC-823 cells, using RNA interference and gene transfection technology, respectively. MKN-28 cells were transfected with the shRNA of RASAL1 and BGC-823 cells were transfected with the pcDNA 3.1 plasmid vector containing RASAL1. RT-PCR and western blotting were then used to detect the expression of RASAL1 mRNA and protein. The activities of RAS and extracellular signal-regulated kinase 1/2 were analyzed by the pull-down method and western blotting. The proliferate capacity, apoptosis rate, invasive and migratory potentials of MKN-28 or BGC-823 cells were also measured by Cell Counting Kit-8 cell proliferation assay, propidium iodide/Annexin V staining coupled with flow cytometry, and transwell chamber assays, respectively. Measurement of RASAL1 mRNA and protein expression in two cells revealed successful transfection of the shRNA of RASAL1 and RASAL1-pcDNA3.1 plasmid into these two cells. Moreover, decreased expression of RASAL1 in MKN-28 cells resulted in increased expression of RAS-GTP and p-ERK1/2. Interestingly, decreased expression of RASAL1 inhibited apoptosis and facilitated cell proliferation, invasion and migration. The increased expression of RASAL1 in BGC-823 cells caused declined expression of RAS-GTP and p-ERK1/2, as well as promoted apoptosis and restrained cell proliferation, invasion and migration. The down-regulation of RASAL1 promoted the proliferation, invasion and migration of gastric cancer MKN-28 cells, and up-regulation of RASAL1 inhibited the proliferation, invasion and migration of BGC-823 gastric cancer cells by regulating the RAS/ERK signaling pathway. Thus, our results suggest that RASAL1 may play an important role as a tumor suppressor gene in gastric cancer.  相似文献   

16.
17.
抑制P18^INK4C表达对胃腺癌细胞侵袭的影响   总被引:2,自引:0,他引:2  
应用基因芯片技术筛选胃腺癌转移相关基因的过程中 ,发现CDK抑制因子 (CKI)P18INK4C在人类胃腺癌转移细胞株RF 4 8中的表达 ,较其原发灶细胞株RF 1明显下调。这提示 ,P18INK4C表达差异与胃腺癌细胞的侵袭转移 ,可能有一定程度的相关性。为此 ,通过反义RNA技术抑制在RF 1中的表达 ,研究其对胃腺癌原发灶细胞体外运动、侵袭转移能力以及生长特性的影响 ,进一步明确P18INK4C与人类胃腺癌侵袭转移之间的关系。结果发现 ,抑制P18INK4C的表达 ,可以使胃腺癌原发灶细胞的体外侵袭能力明显增加 ,抑制前RF 1细胞的体外侵袭能力仅为抑制后的 4 4 %。然而 ,RF 1的细胞周期和生长增殖能力 ,并未因为P18INK4C表达的改变而受到影响。上述结果提示 ,P18INK4C参与人类胃腺癌转移过程 ;在此过程中 ,其主要的作用可能并不是调节细胞周期 ,而是与胃腺癌原发灶细胞侵袭转移能力的调节密切相关。  相似文献   

18.
Matrix metalloproteinases (MMPs) MMP-2 and MMP-9 can degrade type IV collagen of extracellular matrix and basal membranes. Claudin-4 is a member of a large family of transmembrane proteins, claudins, essential in the formation and maintenance of tight junctions. Claudin-4 has been shown to activate MMP-2, indicating that claudin-mediated increased cancer cell invasion might be mediated through the activation of MMP proteins. To explore the roles of MMP-2, MMP-9 and claudin-4 in gastric cancer, we selected 88 cases and then analyzed the expression of these proteins using immunohistochemistry. We found that all of MMP-2, MMP-9 and claudin-4 expressions were significantly higher in intestinal-type than in diffuse-type gastric cancer. On further analysis, testing the relationship between MMP-2 and MMP-9 expression with claudin-4 expression, claudin-4 expression was significantly associated with MMP-9 expression, but not with MMP-2 expression. The results showed that MMP-2, MMP-9 and claudin-4 expression may be phenotypic features, distinguishing intestinal-type and diffuse-type gastric cancer. Possibly, claudin-4 played a role in determining MMP-9 activity which favored intestinal-type gastric cancer to distal metastasis.  相似文献   

19.
Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer.  相似文献   

20.
Adipose tissue exists in the gastric submucosa and subserosa. Thus, adipose tissue stromal cells (ATSCs), which include mesenchymal stem cells (MSCs), seem critical for the progression of gastric cancer but their interaction with the cancer cells is unknown. We demonstrated an interaction between these cells, using immunohistochemistry, Western blot and the collagen gel invasion assay system, in which the adenocarcinoma cells (well and poorly differentiated types, MKN28 and MKN45, respectively) were cultured on a ATSC-embedded or ATSC-non-embedded gel. ATSCs promoted the expression of the growth marker, proliferation cell nuclear antigen but inhibited that of the apoptosis marker, single-stranded DNA, in the cancer cell types. ATSCs accelerated the invasion of only MKN28 into the gel and promoted the expression of mitogen-activated protein kinase (MAPK, pERK-1/2) but decreased that of the molecularly targeted protein, HER2, in the cancer cells. ATSCs did not affect the expression of the prostaglandin biosynthetic enzyme cyclooxgenase-2 (COX-2) in the cancer cells. The COX-2 inhibitor celecoxib did not affect the morphology or invasion of the cancer cells. The cancer cell types in turn promoted the display of the myofibroblast marker, α-smooth muscle actin, whereas they decreased that of some MSC markers, e.g., CD44 and CD105, in ATSCs. The data suggest that (1) ATSCs influence the progression of gastric cancer by increasing their growth/invasion and decreasing their apoptosis through MAPK activation in a COX-2-independent way; (2) ATSCs adversely affect HER2-targeted therapy; (3) the cancer cells induce the cancer-associated myofibroblast phenotype in ATSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号