首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
The leaf protein pattern from drought-tolerant and drought-sensitive wheat varieties subjected to severe soil drought but with the possibility for recover from stress was studied by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The spots representing Rubisco large subunit (RLS) were identified using polyclonal antibodies against Rubisco and immunoblotting. Some qualitative and quantitative differences in the 2D-PAGE protein map of wheat varieties were revealed under drought conditions. Three days recovery of wheat plants were not enough for restoring RLS quantity to the level of controls after 7 days drought, especially in the drought-sensitive variety Miziya. There are contradictory data in the literature concerning increased or diminished RLS level in drought stressed plants. A comparison of RLS after SDS-PAGE and 2D-PAGE was made. The revealed protein pattern depended on the presence or absence of protease inhibitors in the extraction buffer, on the procedure of extraction, and on the degree of stress.  相似文献   

2.
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.This work was partially supported by Swiss National Science Foundation (Project 31-55289.98).  相似文献   

3.
Proteome response of Elymus elongatum to severe water stress and recovery   总被引:1,自引:0,他引:1  
Tall wheatgrass (Elymus elongatum Host) is a drought-tolerant, cool-season forage grass native to Iran. A proteomic approach has been applied to identify mechanisms of drought responsiveness and tolerance in plants undergoing vegetative stage drought stress and then recovery after rewatering. Uniformed clones were reproduced from a parent plant collected from Brojen (central region of Iran). Clones were grown in pots and drought was initiated by withholding water for 16 d. The leaf samples were taken in triplicate from both stressed/rewatered plants and continuously watered controls at five times: (i) 75% FC, (ii) 50% FC, (iii) 25% FC, (iv) 3 d after rewatering, and (v) 14 d after rewatering. Changes in the proteome pattern of shoots were studied using two-dimensional gel electrophoresis. Following the 16 d water stress, both shoot dry weight and leaf width decreased up to 67% compared with the well-watered plants, whereas proline content increased up to 20-fold. Leaf relative water contents (RWC) also declined from 85% to 24%. Out of about 600 protein spots detected on any given two-dimensional gel, 58 protein spots were reproducibly and significantly changed during drought stress and recovery. Only one protein (abscisic acid- and stress-inducible protein) showed significant changes in expression and position in response to severe drought. The fifty-eight responsive proteins were categorized in six clusters including two groups of proteins specifically up- and down-regulated in response to severe drought stress. Eighteen proteins belonging to these two groups were analysed by liquid chromatography tandem mass spectrometry leading to the identification of 11 of them, including the oxygen-evolving enhancer protein 2, abscisic acid- and stress-inducible protein, several oxidative stress tolerance enzymes, two small heat shock proteins, and Rubisco breakdown. The results suggest that E. elongatum may tolerate severe drought stress by accumulating proline and several proteins related to drought-stress tolerance. Recovery after rewatering might be another mechanism by which plants tolerate erratic rainfall in semi-arid regions.  相似文献   

4.
5.
Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.  相似文献   

6.
Five varieties of Sorghum bicolor (L.) Moench., differing in their drought tolerance under field conditions have been used to study the effect of individual components of drought stress, namely high light intensity stress, heat stress and water stress, on their photosynthetic performance. Chlorophyll content, chlorophyll fluorescence, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) content, phosphoenolpyruvate carboxylase (PEPcase, EC 4.1.1.31) activity and photo-synthetic oxygen evolution were used as key parameters to assess photosynthetic performance. The results indicated that photochemical efficiency of photosystem II (PSII) was severely reduced by all three stress components, whereas PEPcase activity was more specifically reduced by water stress. Degradation of Rubisco and chlorophyll loss occurred under high light and water stress conditions. Of the four drought-tolerant varieties, E 36-1 showed higher PEPcase activity, Rubisco content and photochemical efficiency of PSII, and was able to sustain a higher maximal rate of photosynthetic oxygen evolution under each stress condition as compared to the other varieties. A high stability to stress-induced damage, or acclimation of photosynthesis to the individual components of drought stress may contribute to the high yields of E 36-1 under drought conditions. In the E 36-1 variety markedly higher levels of the chloroplastic chaperonin 60 (cpn 60) were observed under all stress conditions than in the susceptible variety CSV 5.Key words: Chlorophyll fluorescence, drought stress, oxygen evolution, phosphoenopyruvate carboxylase, Sorghum.   相似文献   

7.
8.
Plants have developed various mechanisms in adaptation to water deficit stress, including growth retardant to reduce water loss. Previous studies reported that plants treated with a growth inhibitor, trinexapac-ethyl (TE), had improved drought tolerance. The objective of this study was to determine alterations in proteins and metabolite accumulation associated with drought tolerance improvement in a perennial grass species, Kentucky bluegrass (Poa pratensis), induced by TE application. Plants were treated with TE [1.95 ml l−1 (v:v); a.i. TE = 0.113%] through foliar spray for 14 days, and then subjected to drought stress by withholding irrigation for 15 days in growth chambers. TE-treated plants exhibited significantly higher relative water content and photosynthetic capacity and lower membrane leakage than nontreated plants under drought stress, suggesting TE-enhanced drought tolerance in Kentucky bluegrass. Physiological improvement in drought tolerance through TE application was associated with the increased accumulation of various proteins and metabolites, including ferritin, catalase, glutathione-S-transferase, Rubisco, heat shock protein 70, and chaperonin 81, as well as fatty acids (palmitic acid, α-linolenic acid, linoleic acid, and octadecanoic acid). Our results suggest that TE may regulate metabolic processes for antioxidant defense, protective protein synthesis, photorespiration, and fatty acid synthesis, and thereby contribute to better drought tolerance in Kentucky bluegrass.  相似文献   

9.
10.
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic proteins found primarily in plants. The barley hva1 gene encodes a group 3 LEA protein and is induced by ABA and water deficit conditions. We report here the over expression of hva1 in mulberry under a constitutive promoter via Agrobacterium-mediated transformation. Molecular analysis of the transgenic plants revealed the stable integration and expression of the transgene in the transformants. Transgenic plants were subjected to simulated salinity and drought stress conditions to study the role of hva1 in conferring tolerance. The transgenic plants showed better cellular membrane stability (CMS), photosynthetic yield, less photo-oxidative damage and better water use efficiency as compared to the non-transgenic plants under both salinity and drought stress. Under salinity stress, transgenic plants show many fold increase in proline concentration than the non-transgenic plants and under water deficit conditions proline is accumulated only in the non-transgenic plants. Results also indicate that the production of HVA1 proteins helps in better performance of transgenic mulberry by protecting membrane stability of plasma membrane as well as chloroplastic membranes from injury under abiotic stress. Interestingly, it was observed that hva1 conferred different degrees of tolerance to the transgenic plants towards various stress conditions. Amongst the lines analysed for stress tolerance transgenic line ST8 was relatively more salt tolerant, ST30, ST31 more drought tolerant, and lines ST11 and ST6 responded well under both salinity and drought stress conditions as compared to the non-transgenic plants. Thus hva1 appears to confer a broad spectrum of tolerance under abiotic stress in mulberry.  相似文献   

11.
12.
Long term water stress inactivates Rubisco in subterranean clover   总被引:11,自引:0,他引:11  
In long-term field experiments, during consecutive years, microswards of subterranean clover were irrigated to minimise water deficits or subjected to progressively increasing drought over 30 days. Both leaf water potential and relative water content steadily decreased during the experiments. Plants affected by drought grew more slowly and photosynthesis was decreased. Photosynthetic rate (A) and Rubisco were analysed in relation to midday water potentials and relative water contents. The difference in A between draughted and irrigated plants increased progressively, in part as a result of decreased stomatal conductance and CO2 concentration within leaf (Ci). However, A-Ci curves suggest that the photosynthetic capacity in plants experiencing long-term stress was reduced by 50% when compared with irrigated plants. Drought decreased both the initial and the total Rubisco activity per unit area in a similar way but did not reduce the amount of Rubisco protein per unit leaf area. Thus, the specific activity of Rubisco, rather than its activation state, decreased suggesting that under water stress the active sites were blocked by inhibitors.  相似文献   

13.
The effects of senescence and drought on the levels and activities of chlorophyllase (EC 3.1.1.14), phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) in the intact primary leaves of soybean ( Glycine max L. cv. Jackson) were monitored. Plants were grown either (1) for 2 to 8 weeks and the primary leaves harvested every week or (2) for 2 weeks and the plants subjected to drought stress and compared to control plants that were watered daily. In the senescence experiment, chlorophyllase activity changed in parallel with water content, leaf chlorophyll and total protein per unit dry weight of leaf tissue, with all factors increasing in concert during expansion of the primary leaves in the first 4 to 5 weeks of seedling development. Thereafter, all factors, including chlorophyllase activity, declined reaching markedly reduced values at weeks 7 and 8 when the primary leaves were yellow and ready to abscise. PEPC and Rubisco activities peaked in the third week, i.e. well before full leaf expansion, and then declined. In contrast to its response during senescence, chlorophyllase activity per unit leaf dry weight did not change during drought stress, but the specific activity of the enzyme rose and showed an inverse relationship to total leaf chlorophyll and protein content. Rubisco activity was highly sensitive to drought, with decrements observed in the activity and in levels of the large subunit within 2 days of withholding water and before significant changes in leaf water content were detected.  相似文献   

14.
Cytokinins (CKs) may be involved in the regulation of plant adaptation to drought stress. The objectives of the study were to identify proteomic changes in leaves and roots in relation to improved drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera) containing a senescence-activated promoter (SAG12) and the isopentyl transferase (ipt) transgene that increases endogenous CK content. Leaves of SAG12-ipt bentgrass exhibited less severe senescence under water stress, as demonstrated by maintaining lower electrolyte leakage and lipid peroxidation, and higher photochemical efficiency (F(v)/F(m)), compared with the null transformant (NT) plants. SAG12-ipt plants had higher root/shoot ratios and lower lipid peroxidation in leaves under water stress than the NT plants. The suppression of drought-induced leaf senescence and root dieback in the transgenic plants was associated with the maintenance of greater antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). The SAG12-ipt and NT plants exhibited differential protein expression patterns under well-watered and drought conditions in both leaves and roots. Under equivalent leaf water deficit (47% relative water content), SAG12-ipt plants maintained higher abundance of proteins involved in (i) energy production within both photosynthesis and respiration [ribulose 1,5-bisphosphate carboxylase (RuBisCO) and glyceraldehyde phosphate dehydrogenase (GAPDH)]; (ii) amino acid synthesis (methionine and glutamine); (iii) protein synthesis and destination [chloroplastic elongation factor (EF-Tu) and protein disulphide isomerases (PDIs)]; and (iv) antioxidant defence system (catalase and peroxidase) than the NT plants. These results suggest that increased endogenous CKs under drought stress may directly or indirectly regulate protein abundance and enzymatic activities involved in the above-mentioned metabolic processes, thereby enhancing plant drought tolerance.  相似文献   

15.
Micropropagated rose plants (Rosa hybrida L., cv. New Dawn) were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Schenk and Smith) and subjected to different drought regimens. The dual objectives of these experiments were to investigate the mechanism and the extent to which AM can prevent drought damages and whether physiological analyses reveal enhanced drought tolerance of an economically important plant such as the rose. In a long-term drought experiment with four different water regimens, visual scoring of wilt symptoms affirmed that AM in a selected host–symbiont combination increased plant performance. This effect was mostly expressed if moderate drought stress was constantly applied over a long period. In a short-term experiment in which severe drought stress was implemented and plants were allowed to recover after 4 or 9 days, no visual differences between mycorrhizal and non-mycorrhizal roses were observed. Therefore, the early physiological steps conferring drought tolerance were prone to investigation. Proline content in leaves proved to be an unsuitable marker for AM-induced drought tolerance, whereas analysis of chlorophyll a fluorescence using the JIP test (collecting stress-induced changes of the polyphasic O-J-I-P fluorescence kinetics in a non-destructive tissue screening) was more explanatory. Parameters derived from this test could describe the extent of foliar stress response and help to differentiate physiological mechanisms of stress tolerance. AM led to a more intense electron flow and a higher productive photosynthetic activity at several sites of the photosynthetic electron transport chain. A K step, known as a stress indicator of general character, appeared in the fluorescence transient only in drought-stressed non-mycorrhizal plants; conversely, the data elucidate a stabilising effect of AM on the oxygen-evolving complex at the donor site of photosystem (PS) II and at the electron-transport chain between PS II and PS I. If drought stress intensity was reduced by a prolonged and milder drying phase, these significant tolerance features were less pronounced or missing, indicating a possible threshold level for mycorrhizal tolerance induction.  相似文献   

16.
Eight somaclonal variants with enhanced drought tolerance were isolated from regenerated plants of triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis cv., TifEagle). Three of them (10-17, 89-02, 117-08) with strong drought tolerance were selected for investigations of physiological responses to drought stress. Compared to the parent control, TifEagle, the somaclonal variants had higher relative water contents and relative growth, and lower ion leakages in the greenhouse tests, while no difference in evapotranspirational water losses and soil water contents was observed between the variants and TifEagle. The variants also had less leaf firing in the field tests under drought stress. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities decreased gradually in responses to drought stress in all plants and exhibited negative correlations with ion leakage, indicating that the declined activities of these antioxidant enzymes were associated with drought injury in the triploid bermudagrass. However, CAT activities were significantly higher in all three variants than in TifEagle during drought stress. Two variants, 10-17 and 89-02, also had significantly higher APX activities than TifEagle before and during the first 4 days of drought treatments. These two lines also showed higher SOD activities after prolonged drought stress. Proline, total soluble sugars and sucrose were accumulated under drought stress in all plants and exhibited positive correlations with ion leakage. More proline and sugars were accumulated in TifEagle than in the variants. The results indicated that higher activities of the antioxidant enzymes in the variants during drought stress are associated with their increased drought tolerance.  相似文献   

17.
In the phytotron experiment, the effect of elevated atmospheric CO2 (EC, 750 μmol mol?1) on the drought tolerance was studied in two winter varieties (Mv Mambo, tolerant; Mv Regiment, moderately tolerant) and in one spring variety of wheat (Lona, sensitive to drought). Changes in net photosynthetic rate (P N), stomatal conductance, transpiration, wateruse efficiency, effective quantum yield of photosystem II, and activities of glutathione reductase (GR), glutathione-Stransferase (GST), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were monitored during water withdrawal. Drought caused a faster decline of P N at EC, leading to the lower assimilation rates under severe drought compared with ambient CO2 (NC). In the sensitive variety, P N remained high for a longer period at EC. The growth at EC resulted in a more relaxed activation level of the antioxidant enzyme system in all three varieties, with very low activities of GR, GST, APX, and POD. The similar, low values were due to decreases in the varieties which had higher ambient values. A parallel increase of CAT was, however, recorded in two varieties. As the decline in P N was faster at EC under drought but there was no change in the rate of electron transport compared to NC values, a higher level of oxidative stress was induced. This triggered a more pronounced, general response in the antioxidant enzyme system at EC, leading to very high activities of APX, CAT, and GST in all three varieties. The results indicated that EC had generally favourable effects on the development and stress tolerance of plants, although bigger foliage made the plants more prone to the water loss. The relaxation of the defence mechanisms increased potentially the risk of damage due to the higher level of oxidative stress at EC under severe drought compared with NC.  相似文献   

18.
Salicylic acid (SA) is an important signal molecule modulating plantresponses to stress. It is recently reported to induce multiple stresstolerancein plants including drought. An experiment was, therefore, conducted toascertain the effect of salicylic acid on the growth and metabolic profile ofwheat seedlings under water stress. Irrespective of the SA concentration(1–3 mM) and water stress, SA treated plants showed, ingeneral, a higher moisture content, dry mass, carboxylase activity of Rubisco,superoxide dismutase (SOD) activity and total chlorophyll compared to those ofuntreated seedlings. SA treatment, under water stress, protected nitratereductase (NR) activity and maintained, especially at 3 mM SAconcentration, the protein and nitrogen content of leaves compared to watersufficient seedlings. Results signify the role of SA in regulating the droughtresponse of plants and suggest that SA could be used as a potential growthregulator, for improving plant growth under water stress.  相似文献   

19.
Osmotin has been implicated in conferring tolerance to drought and salt stress in plants. We have over-expressed the osmotin gene under the control of constitutive CaMV 35S promoter in transgenic tobacco, and studied involvement of the protein in imparting tolerance to salinity and drought stress. The transgenic plants exhibited retarded leaf senescence and improved germination on a medium containing 200mM NaCl. Further, the transgenics maintained higher leaf relative water content (RWC), leaf photosynthesis and free proline content than the wild type plants during water stress and after recovery from stress. When subjected to salt stress (200mM NaCl), the transgenic plants accumulated significantly more proline than the wild type plants. These results suggest the involvement of the osmotin-induced increase in proline in imparting tolerance to salinity and drought stress in transgenic plants over-expressing the osmotin gene.  相似文献   

20.
Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO(2). In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (g(s)) and chloroplastic CO(2) concentration (C(c)), suggesting that deactivation of Rubisco sites could be induced by low C(c), as a result of water stress. The threshold level of C(c) that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low C(c) were more capable of maintaining active Rubisco as drought stress intensified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号