首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water stress effects on photosynthesis in different mulberry cultivars   总被引:10,自引:0,他引:10  
The effect of water stress on photosynthesis was determined in five mulberry cultivars (Morus alba L. cv. K-2, MR-2, BC2-59, S-13 and TR-10). Drought was imposed by withholding water and the plants were maintained at different water potentials ranging from 0.5 -MPa to 2.0 -MPa. Photosynthetic rates, activities of ribulose-1,5-bisphosphate carboxylase and sucrose phosphate synthase, photosystem II activity and chlorophyll content were used as key parameters to assess photosynthetic performance. There was a marked variation in the photosynthetic rates and ribulose-1,5-bisphosphate carboxylase activity among the five mulberry cultivars subjected to water stress. Photosystem II (PSII) and sucrose phosphate synthase activities were also severely reduced as measured by drought conditions. Of the five mulberry cultivars, S-13 and BC2-59 showed higher photosynthetic rates, ribulose-1,5-bisphosphate carboxylase activity, high sucrose phosphate synthase activity and photochemical efficiency of PSII compared to the other varieties.  相似文献   

2.
Photosynthetic light curve, chlorophyll (Chl) content, Chl fluorescence parameters, malondialdehyde (MDA) content, phosphoenolpyruvate carboxylase (PEPC) activity and reactive oxygen metabolism were studied under drought stress in two autotetraploid rice lines and corresponding diploid rice lines. Net photosynthetic rate decreased dramatically, especially under severe drought stress and under high photosynthetic active radiation in diploid rice, while it declined less under the same conditions in autotetraploid lines. Compared with the corresponding diploid lines, the Chl content, maximum photochemical efficiency of photosystem (PS) II, and actual photochemical efficiency of PSII were reduced less in autotetraploid lines. PEPC activities were higher in autotetraploid rice lines. PEPC could alleviate inhibition of photosynthesis caused by drought stress. The chromosome-doubling enhanced rice photoinhibition tolerance under drought stress. The lower MDA content and superoxide anion production rate was found in the autotetraploid rice indicating low peroxidation level of cell membranes. At the same time, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were higher in autotetraploid rice lines. SOD, POD, and CAT could effectively diminish the reactive oxygen species and reduced the membrane lipid peroxidation.  相似文献   

3.
干旱和复水对草莓叶片叶绿素荧光特性的影响   总被引:19,自引:0,他引:19  
采用日本丰香草莓(Fragaria×ananassa Duch.cv.Toyonoka)品种进行实验,研究干旱和复水对其叶片叶绿素荧光特性的影响。结果表明,随着干旱胁迫程度的加剧,草莓叶片的最大荧光(Fm)、PSⅡ原初光能转化效率(Fv/Fm)、PSⅡ实际光化学效率(Yield)、光化学猝灭系数(qP)都随干旱胁迫的加剧而下降。干旱胁迫14d后,不同处理组草莓叶片的叶绿素荧光参数存在着显著的差异(P0.05)。复水后,低度胁迫和中度胁迫处理组能较快地恢复到正常水平,但重度胁迫组与对照组存在着显著的差异(P0.05)。  相似文献   

4.
Short‐ and long‐term drought stress on photosystem II (PSII) and oxidative stress were studied in Arabidopsis thaliana. Under drought stress, chlorophyll (Chl) content, Chl fluorescence, relative water content and oxygen evolution capacity gradually decreased, and the thylakoid structure was gradually damaged. Short‐term drought stress caused a rapid disassembly of the light‐harvesting complex II (LHCII). However, PSII dimers kept stable under the short‐term drought stress and significantly decreased only after 15 days of drought stress. Immunoblotting analysis of the thylakoid membrane proteins showed that most of the photosystem proteins decreased after the stress, especially for Lhcb5, Lhcb6 and PsbQ proteins. However, surprisingly, PsbS significantly increased after the long‐term drought stress, which is consistent with the substantially increased non‐photochemical quenching (NPQ) after the stress. Our results suggest that the PSII–LHCII supercomplexes and LHCII assemblies play an important role in preventing photo‐damages to PSII under drought stress.  相似文献   

5.
The study investigated the effects of different CaCl2 concentrations (2, 5, and 10 mM) on photosynthetic enzymatic activities, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Plants were sprayed with either CaCl2 or distilled water until run-off. Irrigation was then withheld to induce drought stress. The strength of drought stress was evaluated by relative leaf water content and soil water content, which was 27.3 and 9.5% on day 0 and day 12, respectively. Drought stress decreased activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, chlorophyll (a+b) content, net photosynthetic rate, stomatal conductance, transpiration rate, electron transport rate, the maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII in tung tree seedlings. The CaCl2 pretreatments alleviated the negative effect of drought stress to some degree on all the parameters mentioned above.  相似文献   

6.
Abstract Exposure of tomato plants to a mild chilling temperature and relatively low ambient photon flux density for an extended period (10°C and 400 μmol photons m?2 s?1 d and 5°C night for 6 d) resulted in a significant decrease in the variable chlorophyll fluorescence, the quantum yield of oxygen evolution and the amount of total absorbed energy stored in photochemical intermediates, but not in the chlorophyll concentration or in the activity of ribulose biphosphate carboxylase. These results indicate that photochemical processes involving PSII were affected, and might reflect photoinhibitory effects on the photosynthetic apparatus. Chilling treatment had relatively small influence on the maximal extent of the Emerson effect. This observation, together with the sharp decrease found in the quantum yield of oxygen evolution, could be reconciled with the above results only if some dependency between the two photosystems was assumed. On the basis of this interpretation, it was concluded that the strong Emerson effect after chilling still reflects the typical imbalance between PSI and PSII centres, even though populations of such unaffected pairs are smaller than in the untreated plants. The relatively new photoacoustic technique employed in this study is shown to be useful both as a diagnostic tool and as a means of investigating changes in photochemical activity in the study of environmental stress effects on photosynthesis. The results support the view that photoinhibition can play an important role in limiting photosynthetic activity, and therefore productivity, in chilling-sensitive plants such as the tomato under the natural conditions that prevail during the winter in mediterranean climates.  相似文献   

7.
塔里木河下游地下水位对柽柳叶绿素荧光特性的影响   总被引:1,自引:0,他引:1  
Zhu CG  Li WH  Ma JX  Ma XD 《应用生态学报》2010,21(7):1689-1696
选取塔里木河下游3处地下水埋深6m的监测井位作为研究点,结合典型生态监测断面的地下水位监测数据,分析不同地下水埋深处柽柳的叶绿素荧光特性和光系统的光合活性.结果表明:随着地下水埋深加大和干旱胁迫加剧,柽柳叶片的实际光化学效率、电子传输速率和光化学猝灭等参数普遍下降;非光化学猝灭和调节性能量耗散量子产量等参数显著升高,而最大光量子产量总体处于相对适宜状态.干旱胁迫下柽柳的PSII光合活性随地下水埋深增大而下降,捕获光能的过剩程度加剧,发生光抑制的几率增大,其自身良好的抗旱性和自我调节机制,使光系统II尚未发生显著光损伤.  相似文献   

8.
Ear photosynthesis may be an important source of C for grain growth in water-stressed plants of cereals. The main objectives of this work were to determine the stability of the photosynthetic apparatus and the photochemical efficiency of ears in plants subjected to post-anthesis drought. Plants of wheat ( Triticum aestivum L. cv. Granero INTA) were grown in pots under a rain shelter and subjected to water stress (soil water potential around −0.6 to −0.8 MPa) starting 4  days after anthesis. Post-anthesis drought substantially accelerated the loss of chlorophyll, Rubisco and the light-harvesting complex of photosystem II (LHCII) in the flag leaf, but the degradation of these photosynthetic components was much less affected by water deficit in awns and ear bracts. Quantum yield of PSII (ΦPSII) decreased in leaves of water-stressed plants. In contrast, ear bracts had a higher ΦPSII than leaves, and ΦPSII of ear bracts did not decrease at all in response to drought. Removing the grains immediately before fluorescence measurements (less than 30 min) slightly reduced ΦPSII, indicating that CO2 supplied by grain respiration may contribute to the high photochemical efficiency of ears in droughted plants. However, other factors may be involved in maintaining high ΦPSII, since even in the absence of grains ΦPSII remained much higher in ear bracts than in the flag leaf. The relative stability of ear photosynthetic components and their relatively high photochemical efficiency may help to maintain ear photosynthesis during the grain filling period in droughted plants.  相似文献   

9.
Gas exchange and chlorophyll fluorescence parameters of PSII were analyzed in the bracts and leaves of cotton plants after anthesis. Photosynthetic activity and photorespiration were measured in the leaves and bracts of cotton grown under either normal or reduced water-saving drip irrigation. The photosynthetic performance, amount of chlorophyll and Rubisco, and net photosynthesis were greater in the bracts than that in the leaves under water stress. The actual photochemical efficiency of PSII decreased in both the bracts and leaves after anthesis under reduced irrigation. However, the decrease was smaller in the bracts than in the leaves, indicating that the bracts experienced less severe photoinhibition compared to the leaves. The greater drought tolerance of bracts could be related to differences in relative water content, instantaneous water-use efficiency, and photorespiration rate. The ratio of photorespiration to net photosynthesis was much higher in the bracts than in leaves. Furthermore, water deficiency (due to the water-saving drip irrigation) had no significant effect on that ratio in the bracts. We hypothesized that photorespiration in the bracts alleviated photoinhibition and maintained photosynthetic activity.  相似文献   

10.
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.  相似文献   

11.
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel‐based fitting tool (EFT) that will be of use to specialists and non‐specialists alike. We use data acquired in concurrent variable fluorescence–gas exchange experiments, where A/Ci and light–response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5‐bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis–Menten constant, and Rubisco CO2‐saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.  相似文献   

12.
The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism.  相似文献   

13.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

14.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

15.
Rhododendron delavayi is an alpine evergreen ornamental plant with strong tolerance to drought stress. Brassinosteroids are promising agents for alleviating the negative effects of drought on plants, but the mechanism by which BRs induce plant resistance to drought is not well understood. The present study investigated the effects of exogenous spray of 24-epibrassionlide (EBR) at different concentrations (0~1 mg l−1) on the physiological response of R. delavayi to drought caused by no watering for 10 days. With the increase in EBR concentration, net photosynthetic rate, stomatal conductance, transportation rate, light saturated photosynthetic rate, light compensation point, light saturation point, excitation energy capture efficiency of reaction center, actual photochemical efficiency of photosystem II (PSII), photochemical quenching and electron transport rate significantly increased, but there were no significant effects on photosynthetic pigment content. These results suggested that the EBR-induced improvement in CO2 assimilation under drought was mainly related to stomatal and non-stomatal factors, and partially attributed to the increased photochemical efficiency of PSII. In addition, the leaf water potential increased with the increase in EBR concentration, while the malondialdehyde, superoxide dismutase, catalase, proline and soluble protein decreased. The results suggested EBR application partially alleviated the negative effect of drought on R. delavayi by improving water relations and decreasing lipid peroxidation and reactive oxygen species production. We concluded that exogenous application of EBR improved photosynthesis and alleviated the negative effects of drought-induced membrane peroxidation and severe oxidative stress.  相似文献   

16.
Physiological adaptations for nitrogen use efficiency in sorghum†   总被引:6,自引:0,他引:6  
Known high nitrogen utilization efficiency (NUE1, biomass per unit plant N) China lines of sorghum, China 17 and San Chi San, were compared with relatively low NUE1 U.S. lines, CK60 and Tx623, for both their physiological and biochemical adaptations to tolerate an imposed N stress in the greenhouse. Assimilation efficiency indices (ACi) were significantly greater for the China lines than the U.S. lines at both low and high soil nitrogen levels by about two-fold. Chlorophyll levels in leaves of high NUE1 lines were lower at both soil N treatments. Immunoblots of leaf extracts of sorghum subjected to N stress indicated reduced levels of both phosphoenolpyruvate carboxylase (PEPcase) and ribulose 1,5-bisphosphate carboxylase (Rubisco) while NADP-malic enzyme levels, in general, appear not to be affected. However, NUE1 China line, China 17, retained a significantly greater PEPcase activity than the less-NUE1 U.S. lines, and also the NUE1 China line San Chi San, when grown under N stress conditions. This suggests that PEPcase and enzymes associated with phosphoenolpyruvate synthesis, perhaps, are significant factors in maintaining relatively high photosynthesis under N stress. Carbon isotope ratios of leaves from sorghum genotypes, as indicated by 13C values, became less negative when sorghum plants were grown under N stress, but a genotypic variation either at a low or high N was not observed.  相似文献   

17.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 ·−), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions.  相似文献   

18.
Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b(6)f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.  相似文献   

19.
探明超级小麦品种的旗叶光合作用与荧光动力学特性,为超级小麦品种选育利用提供理论依据。以超级小麦临麦4号为试验材料,应用CI-301PS型便携式光合作用测定系统和FMS-2便携式荧光测定仪(英国Hansatech公司)在田间试验中测定旗叶光合作用与荧光动力学参数。结果表明,与普通高产对照品种皖麦52和烟农19相比,超级小麦临麦4号的光合作用参数光合速率、光饱和点和CO2饱和点、羧化效率高,光补偿点和CO2补偿点低;光合机构系统工作参数PSII实际的光化学效率(ΦPSII)、光化学猝灭系数(qP)、PSII反应中心的激发能捕获效率(Fv/Fm)、PSⅡ潜在活性Fv/Fo和电子传递速率(ETR)值高,非光化学猝灭系数(NPQ)值低。这表明超级小麦临麦4号的光合机构系统工作能力强和工作效率高,保证旗叶光合作用的高效运行,为子粒灌浆提供充足的能量和碳水化合物。  相似文献   

20.
Photosynthesis is one of the most important metabolic processes of algae; which is altered as a stress response. During mass cultivation of algae, temperature rise and high light are major factors that affect biomass productivity. High temperature affects photosystem II (PSII) complex irreversibly, damaging intermolecular interactions in it. However, the impact of high temperature on photosynthesis is highly variable among different algal species, depending on the prior acclimation to environmental conditions they were exposed to. The acclimation plays an important role in combating high temperature stress via regulation of photosynthetic responses. Chlorophyll a fluorescence is a highly sensitive, non‐destructive and reliable tool for such measurements of photosynthetic parameters, which provides information about algal photosynthetic performance under given conditions. To understand the effect of heat stress on the responses of high light acclimated alga Chlorella saccharophila, chlorophyll a fluorescence transients were measured after heat exposure at 40°C. Our study demonstrates that rise in temperature for short duration; during open field cultivation reversibly affects the efficiency of PSII in light acclimated alga C. saccharophila. The effects of heat stress on chlorophyll a fluorescence in this alga, grown under high light (max‐1600 μmol photons m?2 s?1) are presented here; they are used to infer changes in photosynthetic process during its exposure to heat, as well as their recovery after 72 h. We speculate that heat resistance may have been acquired due to prior exposures to high light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号