首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The 54K cellular tumor antigen has been translated in vitro, using messenger ribonucleic acids from simian virus 40 (SV40)-transformed cells or 3T3 cells. The in vitro 54K product could be immunoprecipitated with SV40 tumor serum and had a peptide map that was similar, but not identical, to the in vivo product. The levels of this 54K protein in SV3T3 cells were significantly higher than those detected in 3T3 cells (D. I. H. Linzer, W. Maltzman, and A. J. Levine, Virology 98:308-318, 1979). In spite of this, the levels of translatable 54K messenger ribonucleic acid from 3T3 and SV3T3 cells were roughly equivalent or often greater in 3T3 cells. Pulse-chase experiments with the 54K protein from 3T3 or SV3T3 cells demonstrated that this protein, once synthesized, was rapidly degraded in 3T3 cells but was extremely stable in SV3T3 cells. Similarly, in an SV40 tsA-transformed cell line, temperature sensitive for the SV40 T-antigen, the 54K protein was rapidly turned over at the nonpermissive temperature and stable at the permissive temperature, whereas the levels of translatable 54K messenger ribonucleic acid at each temperature were roughly equal. These results demonstrate a post-translational regulation of the 54K cellular tumor antigen and suggest that this control is mediated by the SV40 large T-antigen.  相似文献   

2.
P Sarnow  Y S Ho  J Williams  A J Levine 《Cell》1982,28(2):387-394
The adenovirus E1b-58kd tumor antigen has been detected in a physical association with a 54 kilodalton cellular protein in adenovirus-transformed mouse cells. Antibody specific for the E1b-58kd protein coimmunoprecipitates a 54 kd protein from transformed, but not from productively infected, cells. Monoclonal antibody specific for the cellular 54 kd protein coimmunoprecipitates the adenovirus E1b-58kd protein from transformed cell extracts. The same or closely related cellular 54 kd protein, associated with the adenovirus E1b-58kd protein, was present in the SV40 large T antigen-54 kd complex previously detected in SV40-transformed mouse cells. The identity of the 54 kd protein is based on the immunological specificities of the anti-54 kd monoclonal antibodies and partial peptide maps of the 54 kd protein associated with the adenovirus and SV40 tumor antigens. The adenovirus E1b-58kd-54 kd complex, like the SV40 large T antigen-54 kd complex, is heterogeneous in size or mass. While all of the cellular 54 kd protein in the adenovirus-transformed cell extract is found in a complex with the E1b-58kd protein, some of the viral 58 kd antigen is detected in a form not associated with the 54 kd protein. The fact that the adenovirus and Sv40 tumor antigens, both required for transformation, can be found in physical association with the same cellular protein in a transformed cell is a good indication that these two diverse viral proteins share some common mechanisms or functions.  相似文献   

3.
M Kress  E May  R Cassingena    P May 《Journal of virology》1979,31(2):472-483
In addition to the virus-coded large-T and small-t antigens, two new classes of proteins were immunoprecipitated by anti-simian virus 40 (SV40) tumor serum from extracts of various SV40-transformed cell lines. These were as follows: (i) proteins (termed "super-T proteins") with an Mr higher than that of large-T antigen (86,000), which were found in many SV40-transformed cell lines derived from mouse and rat cells (super-T proteins and large-T antigen appeared to have closely related structures as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides); (ii) proteins (termed "55K proteins") with an Mr ranging from 50,000 to 60,000, which were present in all SV40-transformed cell lines examined so far, including those obtained by chromosome-mediated gene transfer. The 55K proteins were not structurally related to large-T antigens, as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides. Our data are compatible with the assumption that the 55K proteins are largely or totally cell coded.  相似文献   

4.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

5.
Antibodies were raised against six synthetic peptides corresponding to overlapping amino acid sequences (106 through 145) from a putative DNA binding domain in simian virus 40 (SV40) large-T antigens. All six antipeptide sera immunoprecipitated large-T from crude extracts of SV40-transformed cells, but the efficiency varied widely; in general, antibodies to the longer peptides produced the strongest anti-large-T activity. Antisera were purified by immunoaffinity chromatography on immobilized peptide. The purified antisera recognized only some forms of large-T; full-sized large-T from transformed cells, super-T from SV3T3 C120 cells, and 70,000-dalton T-antigen from Taq-BamHI cells were immunoprecipitated, whereas large-T from productively infected cells reacted irreproducibly, and the full-sized protein, synthesized in vitro or eluted from sodium dodecyl sulfate-containing gels, and the 33,000- and 22,000-dalton truncated large-Ts from Swiss SV3T3 and MES2006 cells, respectively, were not immunoprecipitated. This pattern of reactivity was explained when extracts were fractionated by sucrose density centrifugation, and it was found that only rapidly sedimenting forms of large-T were immunoprecipitated by the antipeptide sera; that is, large-T complexed with nonviral T antigen was detected, whereas lighter forms were not detected. Cascade immunoprecipitations did not support the view that this result was caused by the low affinity of the peptide antisera for large-T, and Western blotting experiments confirmed that the peptide antisera react directly with immobilized, monomeric large-T but not with nonviral T antigen. Immunoprecipitation assays to detect large-T:nonviral T antigen complexes bound specifically to fragments of SV40 DNA showed that under conditions of apparent antibody excess, DNA still bound to the complex.  相似文献   

6.
Simian virus 40 (SV40)-transformed cells and cells infected by the nondefective adenovirus 2(Ad2)-SV40 hybrid viruses Ad2+ND1 and Ad2+ND2 were analyzed for SV40 T- and U-antigens, respectively, using individual hamster SV40 tumor sera or serum for which U-antibodies were removd by absorption. These studies showed that (i) T- and U-antigens can be defined by separate classes of antigenic determinants and (ii) the U-antigenic determinants in SV40-transformed cells and in hybrid virus-infected cells are similar. The apparent discrepancy in the subcellular location of U-antigen in SV40-transformed cells (nuclear location) and in hybrid virus-infected cells (perinuclear location) as determined by immunofluorescence staining of methanol/acetone-fixed cells could be resolved by treating hybrid virus-infected cells with a hypotonic KCl solution before fixation. Upon this treatment hybrid virus-infected cells also showed nuclear U-antigen staining. The possibility of an association of T- and U-antigens with different nuclear subfractions in SV40-transformed cells was investigated. Detergent-cleaned nuclei of SV40-transformed cells were fractionated into nuclear matrices and a DNase-treated, high-salt nuclear extract. Analysis of the nuclear matrices by immunofluorescence microscopy with T+U+ and T+U- hamster SV40 tumor serum revealed that U-antigen remained associated with the nuclear matrices, whereas T-antigen could not be detected in this nuclear subfraction. T-antigen, however, could be immunoprecipitated from nuclear extracts of the SV40-transformed cells.  相似文献   

7.
The relative importance of viral tumor antigen expression and the cellular background in the maintenance of a transformation phenotype was examined in five SV40-transformed teratocarcinoma-derived cell lines. These cell lines show qualitative differences in growth characteristics associated with transformation, and vary in their state of differentiation. Viral T antigen expression was evaluated by two criteria: 1) the amount of immunoprecipitated antigen in growing cells, and 2) the amount and rate of antigen synthesis in density-inhibited cells. There was no direct correlation found between retention, or rate of synthesis, of the viral T antigen and the degree of transformation. These findings imply that the cellular environment has a more important influence on the growth properties of a stably transformed cell than the quantitative levels of viral T antigen expression.  相似文献   

8.
A D Levinson  A J Levine 《Cell》1977,11(4):871-879
Serum from hamsters bearing group C adenovirus-induced tumors can be divided into two classes: first, a broad spectrum serum that contains antibodies to several early adenovirus proteins, immunoprecipitated from virus-infected cell extracts, with molecular weights of 72,000, 58,000, 44,000 and 17,000 daltons; and second, a narrow spectrum serum that contains antibodies to the 58,000 dalton protein from virus-infected cell extracts. Both types of sera have been used to immunoprecipitate specifically the 58,000 dalton protein from a type 2 adenovirus-transformed hamster cell line and a type 2 adenovirus-SV40 nondefective hybrid (Ad2+ND-1) transformed hamster cell line. In addition, the broad spectrum serum immunoprecipitates or co-precipitates a late adenovirus protein of 120,000 daltons from virus-infected, but not virus-transformed cells.Peptide maps of the 120,000 dalton antigen and the virus hexon structural protein (120,000 daltons) demonstrate that these proteins are closely related. The 72,000 dalton antigen has been shown to be the adenovirus single-strand-specific DNA binding protein. Peptide maps of this 72,000 dalton antigen demonstrate that it contains all the peptides found in the 44,000 dalton antigen. The 72,000 dalton antigen contains two additional peptide fragments not detected in the 44,000 dalton protein, indicating that this 44,000 dalton antigen is a proteolytic breakdown product of the 72,000 dalton protein. The 58,000 dalton adenovirus tumor antigen has a peptide map which is completely distinct from the 120,000, 72,000 and 44,000 dalton proteins. These data demonstrate that the 58,000 dalton antigen is chemically distinct from the 72,000–44,000 dalton early adenovirus proteins.  相似文献   

9.
Antisera were prepared in syngeneic hosts against subcellular fractions of simian virus 40 (SV40)-transformed cells (MoalphaPM, MoalphaNuc), glutaraldehydefixed SV40-transformed cells (HaalphaH-50-G, MoalphaVLM-G), and electrophoretically purified denatured SV40 tumor antigen (T-ag) (RaalphaT). Immune sera were also collected from animals bearing tumors induced by SV40-transformed cells (HaalphaT, MoalphaT, HAF) and from SV40-immunized animals that had rejected a transplant of SV40-transformed cells (HaalphaS, MoalphaS). Immunological reagents prepared against cell surface (MoalphaPM, HaalphaS, MoalphaS, HaalphaH-50-G, MoalphaVLM-G) reacted exclusively with the surface of SV40-transformed cells by indirect immunofluorescence or protein A surface antigen radioimmunoassay. Immunological reagents prepared against the nuclear fraction (MoalphaNuc) or whole-cell determinants (HaalphaT, MoalphaT, HAF, RaalphaT) reacted with both the nuclei and surface of SV40-transformed or -infected cells. All reagents were capable of immunoprecipitating 96,000-molecular weight large T-ag from solubilized whole cell extracts of SV40-transformed cells. The exclusive surface reactivity of HaalphaS exhibited in immunofluorescence tests was abolished by solubilization of subcellular fractions, which then allowed immunoprecipitation of T-ag by HaalphaS from both nuclear and plasma membrane preparations. Specificity was established by the fact that all T-reactive reagents failed to react in serological tests against chemically transformed mouse cells, and sera from mice bearing transplants chemically transformed mouse cells (MoalphaDMBA-2) failed to react with SV40-transformed mouse or hamster cells. Reagents demonstrating positive surface immunofluorescence and protein A radioimmunoassay reactions against SV40-transformed cells were capable of blocking the surface binding of RaalphaT to SV40-transformed cells in a double-antibody surface antigen radioimmunoassay. This blocking ability demonstrated directly that a component specificity of each surface-reactive reagent is directed against SV40 T-ag. A model is presented which postulates that the differential detection of T-ag by the various serological reagents is a reflection of immunogenic and antigenic differences between T-ag polypeptides localized in nuclei and plasma membranes.  相似文献   

10.
HeLa cells infected with the nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses (Ad2(+)ND1, Ad2(+)ND2, Ad2(+)ND4, and Ad2(+)ND5) synthesize SV40-specific proteins ranging in size from 28,000 to 100,000 daltons. By analysis of their methionine-containing tryptic peptides, we demonstrated that all these proteins shared common amino acid sequences. Most methionine-containing tryptic peptides derived from proteins of smaller size were contained within the proteins of larger size. Seventeen of the 21 methionine-containing tryptic peptides of the largest SV40-specific protein (100,000 daltons) from Ad2(+)ND4-infected cells were identical to methionine-containing peptides of SV40 T-antigen immunoprecipitated from extracts of SV40-infected cells. All of the methionine-containing tryptic peptides of the Ad2(+)ND4 100,000-dalton protein were found in SV40 T-antigen immunoprecipitated from SV40-transformed cells. All SV40-specific proteins observed in vivo could be synthesized in vitro using the wheat germ cell-free system and SV40-specific RNA from hybrid virus-infected cells that was purified by hybridization to SV40 DNA. As proof of identity, the in vitro products were shown to have methionine-containing tryptic peptides identical to those of their in vivo counterparts. Based on the extensive overlap in amino acid sequence between the SV40-specific proteins from hybrid virus-infected cells and SV40 T-antigen from SV40-infected and -transformed cells, we conclude that at least the major portion of the SV40-specific proteins cannot be Ad2 coded. From the in vitro synthesis experiments with SV40-selected RNA, we further conclude that the SV40-specific proteins must be SV40 coded and not host coded. Since SV40 T-antigen is related to the SV40-specific proteins, it must also be SV40 coded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号