首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的:探讨巨噬细胞在大鼠肾脏缺血/再灌注损伤过程中的亚型转变及意义。方法:将30只雄性SD大鼠随机分成假手术组(Sham,n=6)和缺血/再灌组(IRI,夹闭肾动脉45 min,n=24)。IRI组分别于术后0、6、24和72 h取肾组织,每个时相组6只大鼠。用HE染色观察肾组织损伤程度;免疫组化染色检测细胞增殖核抗原(PCNA)的表达;实时定量RT-PCR检测巨噬细胞移动抑制因子(MIF) mRNA的表达;免疫组织荧光染色检测MIF、单核巨噬细胞趋化蛋白-1(MCP-1)以及活化巨噬细胞标志物CD68的表达,流式细胞分析检测巨噬细胞M1和M2亚型的分布特征。结果:病理结果显示大鼠肾局部损伤情况和炎症细胞浸润程度在24 h时最为严重,之后逐渐恢复。PCNA在再灌后表达明显增加,6 h达峰值,72 h表达下降。相比于正常组,再灌组大鼠肾组织中MIF的mRNA和蛋白表达明显升高;MCP-1表达则在6 h达峰值,随后下降;而CD68阳性的巨噬细胞数量明显增加,24 h达峰值,72 h表达下降。更进一步研究发现缺血/再灌注6 h时,M1亚型分布达最高值;之后随着缺血/再灌注时间延长,M1亚群相对含量开始下调,M2随之升高。结论:在肾脏缺血/再灌注早期,M1巨噬细胞介导的组织损伤发挥主要作用,随后M2型表达逐渐上调,并通过促进细胞增殖修复肾组织损伤。  相似文献   

3.
Acute kidney injury, often caused by an ischemic insult, is associated with significant short-term morbidity and mortality, and increased risk of chronic kidney disease. The factors affecting the renal response to injury following ischemia and reperfusion remain to be clarified. We found that the Stem cell antigen-1 (Sca-1), commonly used as a stem cell marker, is heavily expressed in renal tubules of the adult mouse kidney. We evaluated its potential role in the kidney using Sca-1 knockout mice submitted to acute ischemia reperfusion injury (IRI), as well as cultured renal proximal tubular cells in which Sca-1 was stably silenced with shRNA. IRI induced more severe injury in Sca-1 null kidneys, as assessed by increased expression of Kim-1 and Ngal, rise in serum creatinine, abnormal pathology, and increased apoptosis of tubular epithelium, and persistent significant renal injury at day 7 post IRI, when recovery of renal function in control animals was nearly complete. Serum creatinine, Kim-1 and Ngal were slightly but significantly elevated even in uninjured Sca-1-/- kidneys. Sca-1 constitutively bound both TGFβ receptors I and II in cultured normal proximal tubular epithelial cells. Its genetic loss or silencing lead to constitutive TGFβ receptor—mediated activation of canonical Smad signaling even in the absence of ligand and to KIM-1 expression in the silenced cells. These studies demonstrate that by normally repressing TGFβ-mediated canonical Smad signaling, Sca-1 plays an important in renal epithelial cell homeostasis and in recovery of renal function following ischemic acute kidney injury.  相似文献   

4.
Administration of fibroblastic cells derived from a number of tissues (collectively called “mesenchymal stem cells”) has been suggested to be beneficial for renal repair and mortality reduction in renal ischemia–reperfusion injury (IRI), but the underlying mechanism is not fully understood. In the present study, our objective was to investigate the involvement of macrophages in the therapeutic effect of human umbilical cord-derived stromal cells (hUCSCs) on renal IRI. Twenty-four hours after reperfusion, hUCSCs were injected intravenously and resulted in significant improvements in renal function, with a lower tubular injury score together with more proliferative and fewer apoptotic tubular cells in kidney tissue. Moreover, hUCSCs reduced the infiltration of macrophages into renal interstitium especially at 5 days post-reperfusion, while the proportion of anti-inflammatory M2 macrophages was markedly increased. HUCSCs also alleviated the local inflammatory response in kidneys. The absence of macrophages during the early phase of reperfusion enhanced the therapeutic effect of hUCSCs, whereas macrophage depletion during the late repair phase eliminated the renoprotective role of hUCSCs. In vitro, macrophages cocultured with hUCSCs were switched to the alternatively activated M2 phenotype. Our data indicate that hUCSCs are capable of promoting the M2 polarization of macrophages at injury sites, suggesting a new mechanism for hUCSC-mediated protection in renal IRI.  相似文献   

5.
Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3–7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7.  相似文献   

6.
BackgroundThe prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI.MethodsWe used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ETA, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2′-deoxyguanosine, F4/80 and PCNA, respectively.ResultsIRI induced kidney failure and increased ET-1 and ETA receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice.ConclusionOur results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.  相似文献   

7.
Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.  相似文献   

8.
9.
Inflammatory response plays an important role in ischaemia reperfusion injury (IRI) through a variety of inflammatory cells. Apart from neutrophils, macrophages and lymphocytes, the role of dendritic cells (DCs) in IRI has been noticed. The study was aimed at investigating whether the high‐mobility group protein box‐1/toll like receptor 4 (HMGB1/TLR4) signalling pathway regulate the migration, adhesion and aggregation of DCs to the myocardium, induce DCs activation and maturation, stimulate the expression of surface costimulatory molecules and participate in myocardial IRI. In vivo, migration, adhesion, and aggregation of DCs was enhanced; the expression of peripheral blood DCs CD80 and CD86, myocardial adhesion molecules were increased; and the infarct size was increased during myocardial ischaemia reperfusion injury myocardial ischemic/reperfusion injury (MI/RI). These responses induced by MI/RI were significantly inhibited by HMGB1 specific neutralizing antibody treatment. Cellular experiments confirmed that HMGB1 promoted the release of inflammatory cytokines through TLR4/MyD88/NF‐κB, upregulated CD80 and CD86 expression, mediated the damage of cardiomyocytes and accelerated the apoptosis. Our results indicate that DCs activation and maturation, stimulate the expression of surface costimulatory molecules by promoting the release of inflammatory factors through NF‐κB pathway and participate in myocardial IRI.  相似文献   

10.
Skeletal muscle satellite cells from uninjured muscle of adult animals are generally found to be in a quiescent state, and when cultured, they remain quiescent in vitro for a period of time which is directly related to the age of the donor animal. A technique for studying the activation of satellite cells in primary cultures has been developed and employs proliferating cell nuclear antigen (PCNA) as a marker for entrance into the S phase of the cell cycle. PCNA is a protein involved in DNA replication and is maximally expressed in S phase of the cell cycle. We monitored PCNA expression in satellite cells isolated from young (3 week) and adult (9 month) rats, and our results indicate that satellite cells begin to accumulate PCNA prior to changes in cell number in both age groups. Using ELISA techniques, we demonstrated that addition of an extract of crushed muscle (CME) activated satellite cells and significantly reduced the length of the lag phase in cells from both age groups. Addition of bFGF shortened the lag phase of PCNA synthesis in satellite cells from 3-week-old rats but had no effect on the kinetics of PCNA expression in cells from 9-month-old rats. Based on our experiments, PCNA expression can be used as a marker to follow the entry of satellite cells into the cell cycle in primary mass cultures. © 1993 Wiley-Liss, Inc.  相似文献   

11.
12.
目的研究小鼠肾缺血再灌注损伤的发病机制。方法建立小鼠肾缺血再灌注损伤模型。12只雄性C57BL/6随机分为2个组(n=6),分别为假手术组(Sham),肾缺血再灌注损伤模型组(IRI)。IRI组血管夹夹闭左肾动脉,置于32℃温箱后1h松开血管夹,去除右肾。Sham组操作同上,但不夹闭左肾动脉。再灌注24h后处死小鼠,收集血清和肾脏标本。测定血清肌酐(Cr)和血尿素氮(BUN)。PAS染色后显微镜下观察肾脏形态学变化,Western印迹分析ERK、p-ERK的表达,PCR检测MCP-1、IFN-γ。结果与假手术组(Sham)相比,IRI组血清肌酐、血尿素氮明显升高,病理检查可见肾脏内肾小管上皮细胞明显肿胀坏死、蛋白管型形成明显,还可观察到炎性细胞浸润明显增加。ERK、p-ERKWestern印迹结果PCR显示MCP-1、TNF-α也明显上调,但ERK表达不变。结论在肾缺血再灌注中,ERK激活介导的炎性后府可能参与了肾扣伤。  相似文献   

13.
Recovery after acute kidney injury is impaired in the elderly, but the precise mechanism for such age-related incompetence remains unclear. By in vivo bromodeoxyuridine (BrdU) labeling, renal progenitor cells (label-retaining cells; LRCs) were identified in tubules of normal rat kidney and were shown to be the origin of proliferating cells after injury. In the present study, the involvement of LRCs in the age-related decline of tubular recovery after injury was examined. After 1 wk of BrdU labeling followed by a 2-wk chase period, ischemia-reperfusion injury was induced in 7-wk-, 7-mo-, and 12-mo-old rats. Age-related decreases in DNA synthesis and cell proliferation in renal tubules after injury were found. The number of LRCs also significantly declined with age. At 24 h after reperfusion, the number of LRCs significantly increased in all ages of rats tested. There was no significant difference in the ratio of LRC division among rats of different ages. The area of the rat endothelial cell antigen (RECA)-1-positive capillary network declined with age. When renal tubules isolated from rats treated with BrdU label were cocultured with human umbilical vein endothelial cells (HUVEC), the number of LRCs significantly increased compared with tubules cultured without HUVEC. These data suggest that the reduced capacity of tubular regeneration in the aging kidney is partly explained by the shortage of LRC reserves. The size of the LRC pool might be regulated by the surrounding peritubular capillary network.  相似文献   

14.
NADPH oxidase plays a central role in mediating oxidative stress during heart, liver, and lung ischemia/reperfusion injury, but limited information is available about NADPH oxidase in renal ischemia/reperfusion injury. Our aim was to investigate the activation of NADPH oxidase in a swine model of renal ischemia/reperfusion damage. We induced renal ischemia/reperfusion in 10 pigs, treating 5 of them with human recombinant C1 inhibitor, and we collected kidney biopsies before ischemia and 15, 30, and 60 min after reperfusion. Ischemia/reperfusion induced a significant increase in NADPH oxidase 4 (NOX-4) expression at the tubular level, an upregulation of NOX-2 expression in infiltrating monocytes and myeloid dendritic cells, and 8-oxo-7,8-dihydro-2′-deoxyguanosine synthesis along with a marked upregulation of NADPH-dependent superoxide generation. This burden of oxidative stress was associated with an increase in tubular and interstitial expression of the myofibroblast marker α-smooth muscle actin (α-SMA). Interestingly, NOX-4 and NOX-2 expression and the overall NADPH oxidase activity as well as α-SMA expression and 8-oxo-7,8-dihydro-2′-deoxyguanosine synthesis were strongly reduced in C1-inhibitor-treated animals. In vitro, when we incubated tubular cells with the anaphylotoxin C3a, we observed an enhanced NADPH oxidase activity and α-SMA protein expression, which were both abolished by NOX-4 silencing. In conclusion, our findings suggest that NADPH oxidase is activated during ischemia/reperfusion in a complement-dependent manner and may play a potential role in the pathogenesis of progressive renal damage in this setting.  相似文献   

15.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

16.
17.
Heme oxygenase-1 (HO-1) overexpression protects against tissue injury in many inflammatory processes, including ischemia/reperfusion injury (IRI). This study evaluated whether genetically decreased HO-1 levels affected susceptibility to liver IRI. Partial warm ischemia was produced in hepatic lobes for 90 min followed by 6 h of reperfusion in heterozygous HO-1 knockout (HO-1(+/-)) and HO-1(+/+) wild-type (WT) mice. HO-1(+/-) mice demonstrated reduced HO-1 mRNA/protein levels at baseline and postreperfusion. This corresponded with increased hepatocellular damage in HO-1(+/-) mice, compared with WT. HO-1(+/-) mice revealed enhanced neutrophil infiltration and proinflammatory cytokine (TNF-alpha, IL-6, and IFN-gamma) induction, as well as an increase of intrahepatic apoptotic TUNEL(+) cells with enhanced expression of proapoptotic genes (Bax/cleaved caspase-3). We used cobalt protoporphyrin (CoPP) treatment to evaluate the effect of increased baseline HO-1 levels in both WT and HO-1(+/-) mice. CoPP treatment increased HO-1 expression in both animal groups, which correlated with a lower degree of hepatic damage. However, HO-1 mRNA/protein levels were still lower in HO-1(+/-) mice, which failed to achieve the degree of antioxidant hepatoprotection seen in CoPP-treated WT. Although the baseline and postreperfusion HO-1 levels correlated with the degree of protection, the HO-1 fold induction correlated instead with the degree of damage. Thus, basal HO-1 levels are more critical than the ability to up-regulate HO-1 in response to the IRI and may also predict the success of pharmacologically induced cytoprotection. This model provides an opportunity to further our understanding of HO-1 in stress defense mechanisms and design new regimens to prevent IRI.  相似文献   

18.
19.
Ischemia reperfusion injury (IRI) is a major cause of delayed graft function. Recent studies have shown that selectins play an important role in IRI. Selectins bind to sialylated and fucosylated sLe(x) receptors, and two enzymes, fucosyltransferase IV (FucT-IV) and VII (FucT-VII), are important in the function of these receptors. We hypothesized that fucosyltransferase (FucT) enzymes were important pathophysiologic mediators of renal IRI. We therefore evaluated renal IRI in mice deficient in FucT-IV, FucT-VII, and both FucT-IV and FucT-VII and compared their renal function, tubular injury, selectin ligand expression, and neutrophil infiltration to those in wild-type control mice. Bilateral 30-min renal IRI was performed, and the results demonstrated that mice deficient in both FucT-IV/FucT-VII were significantly protected from renal IRI at 24 and 48 h compared with wild-type control mice. FucT-IV-deficient mice showed only modest protection from renal injury at 24 h. However, FucT-VII-deficient mice had similar injury as wild-type mice. Histological analysis of kidney tissue postischemia revealed that mice deficient in both FucT-IV and FucT-VII had significantly reduced tubular injury compared with wild-type mice. Selectin ligand expression increased postischemia in wild-type, but not FucT-IV/FucT-VII-deficient, mice. Neutrophil infiltration in postischemic kidneys of FucT-IV/FucT-VII-deficient mice was also attenuated. These data demonstrate that fucosyltransferases are important in the pathogenesis of renal IRI and are potential therapeutic targets.  相似文献   

20.

Background

Despite a significant improvement in the management of chronic kidney disease (CKD), its incidence and prevalence has been increasing over the years. Progressive renal fibrosis is present in CKD and involves the participation of several cytokines, including Transforming growth factor-β1 (TGF-β1). Besides cardiovascular diseases and infections, several studies show that Vitamin D status has been considered as a non-traditional risk factor for the progression of CKD. Given the importance of vitamin D in the maintenance of essential physiological functions, we studied the events involved in the chronic kidney disease progression in rats submitted to ischemia/reperfusion injury under vitamin D deficiency (VDD).

Methods

Rats were randomized into four groups: Control; VDD; ischemia/reperfusion injury (IRI); and VDD+IRI. At the 62 day after sham or IRI surgery, we measured inulin clearance, biochemical variables and hemodynamic parameters. In kidney tissue, we performed immunoblotting to quantify expression of Klotho, TGF-β, and vitamin D receptor (VDR); gene expression to evaluate renin, angiotensinogen, and angiotensin-converting enzyme; and immunohistochemical staining for ED1 (macrophages), type IV collagen, fibronectin, vimentin, and α-smooth mucle actin. Histomorphometric studies were performed to evaluate fractional interstitial area.

Results

IRI animals presented renal hypertrophy, increased levels of mean blood pressure and plasma PTH. Furthermore, expansion of the interstitial area, increased infiltration of ED1 cells, increased expression of collagen IV, fibronectin, vimentin and α-actin, and reduced expression of Klotho protein were observed. VDD deficiency contributed to increased levels of plasma PTH as well as for important chronic tubulointerstitial changes (fibrosis, inflammatory infiltration, tubular dilation and atrophy), increased expression of TGF-β1 and decreased expression of VDR and Klotho protein observed in VDD+IRI animals.

Conclusion

Through inflammatory pathways and involvement of TGF-β1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号