首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
E N Chikvaidze 《Biofizika》1988,33(4):723-725
ESR study was carried out of the interaction between Zn2+, Cu2+, Ca2+, Mg2+ ions and human serum albumin (HSA) in the presence of Mn2+ ions which depends on pH. Competitive binding of these ions with "manganese-binding" sites of albumin was shown to depend on pH. An analysis of concentration dependence of binding these ions with human serum albumin confirmed earlier supposition about the nature of the binding sites of Mn2+ ions with HSA.  相似文献   

2.
Calcyclin is a calcium and zinc binding protein   总被引:1,自引:0,他引:1  
Calcyclin, a cell cycle regulated protein, was recently purified from Ehrlich ascites tumour (EAT) cells and shown to be a calcium binding protein. Here we show that calcyclin monomer and dimer also bind zinc ions. Zinc binding sites seem to be different from calcium binding sites since: preincubation with Ca2+ lacks effect on the binding of Zn2+, and Ca2+ (but not Zn2+) increases tyrosine fluorescence intensity. Binding of Zn2+ reduces the extent of the conformational changes induced by Ca2+, and seems to affect Ca2(+)-binding. The data suggest that Ca2+ and Zn2+ might trigger the biological activity of calcyclin.  相似文献   

3.
The effect of four metal ions Cu(2+), Ni(2+), Zn(2+) and Co(2+) on the interaction between bovine serum albumin (BSA) and berberine chloride (BC) extracted from a traditional Chinese Herb coptis chinensis franch, was investigated mainly by means of UV and fluorescence spectroscopy in this paper. The four metal ions make the quenching efficacy of BC to BSA higher than that in the absence of these metal ions because of the possible transition of BSA molecular conformation caused by metal ions. It was found that the quenching mechanism is a combination of static quenching with nonradiative energy transfer. In the presence of metal ions, the apparent association constant K(A) and the number of binding sites of BC on BSA are both decreased in a range of 8-19% and 25-28%, respectively, which indicates that the metal ions decrease the binding efficacy of BC on BSA and increase the concentration of free BC simultaneously. The scheme of interaction between BC and BSA in the presence of metal ions is a strong quenching but a weak binding.  相似文献   

4.
1. Channel catfish (Ictalurus punctatus) have a remarkably high concentration of zinc (Zn) in their blood serum, about 20 micrograms/ml. However, compared to mammals, the concentrations of Zn in their tissues are not remarkable. The serum Zn is dialyzable against a solution containing 1 mM EDTA. 2. Following separation of serum proteins by gel-filtration most of the Zn was recovered in a fraction with the same peak volume of elution for the Zn and protein concentrations and having a molecular weight similar to bovine serum albumin. 3. Binding of Zn to such sites was not changed by Cu2+, Cd2+, Ca2+, or La3+. N-ethylemaleimide (NEM) appeared to decrease binding slightly. 4. Equilibrium dialysis with a Scatchard plot analysis of these data suggested that a single set of binding sites was present on the protein(s) with KD of 2 x 10(-5) M. There were binding sites for 35 x 10(-8) M Zn/mg protein. 5. Parallel equilibrium dialysis measurements using human, rabbit and chicken albumins indicated that the catfish serum protein(s) had a much higher affinity and binding capacity for Zn than the albumins in these species. 6. The catfish Zn serum-binding protein may be an albumin. The possible physiological significance of such a serum protein in freshwater fish is discussed.  相似文献   

5.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

6.
Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.  相似文献   

7.
The interaction of several serum albumins with chelated (iminodiacetate, IDA) and immobilized (agarose-IDA) metal ions, Co2+, Ni2+, Cu2+ and Zn2+, was studied. There was no retention of human, bovine, porcine, murine and avian albumins on IDA-Zn(II) and IDA-Co(II) columns. However, all albumins studied, i.e., those of: man, cow, pig, dog, rabbit, rat, mouse, chicken and pigeon were retained on IDA-Cu(II) columns, and all except dog albumin were retained also on IDA-Ni(II). The recognition of albumins by chelated and immobilized transition metals seems to be related to an affinity for the imidazole side chains. It is postulated that one to three imidazoles is involved in this interaction, under the employed experimental conditions (pH 7.0; 1 M sodium chloride). There is no evidence for any significant contribution of tryptophan or cysteine (Cys 34) residues to the chromatographic event. The retention of defatted albumin and albumin oligomers (human), on IDA-Cu(II) columns was not significantly different from that of non-defatted albumin or albumin monomer, respectively.  相似文献   

8.
Metal ion binding to human hemopexin   总被引:1,自引:0,他引:1  
Binding of divalent metal ions to human hemopexin (Hx) purified by a new protocol has been characterized by metal ion affinity chromatography and potentiometric titration in the presence and absence of bound protoheme IX. ApoHx was retained by variously charged metal affinity chelate resins in the following order: Ni(2+) > Cu(2+) > Co(2+) > Zn(2+) > Mn(2+). The Hx-heme complex exhibited similar behavior except the order of retention of the complex on Zn(2+)- and Co(2+)-charged columns was reversed. One-dimensional (1)H NMR of apoHx in the presence of Ni(2+) implicates at least two His residues and possibly an Asp, Glu, or Met residue in Ni(2+) binding. Potentiometric titrations establish that apoHx possesses more than two metal ion binding sites and that the capacity and/or affinity for metal ion binding is diminished when heme binds. For most metal ions that have been studied, potentiometric data did not fit to binding isotherms that assume one or two independent binding sites. For Mn(2+), however, these data were consistent with a high-affinity site [K(A) = (15 +/- 3) x 10(6) M(-)(1)] and a low-affinity site (K(A) 相似文献   

9.
Two Zn-finger proteins, TFIIIA (a constituent of 7S RNP particles) and p43 (a constituent of 42S RNP particles), were detected in ovary extracts of juvenile Xenopus laevis females by in vitro binding of radiolabeled divalent metals. Proteins fractionated by SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) were transferred by Western blotting onto nitrocellulose membranes, probed with 65Zn2+, 63Ni2+, or 109Cd2+, and visualized by autoradiography. Detection limits for TFIIIA were approx 0.07 micrograms/well by 109Cd(2+)-probing, 0.13 micrograms/well by 65Zn(2+)-probing, and 0.26 mu/well by 63Ni(2+)-probing. Protein p43 was more clearly visualized by probing with 63Ni2+ than with 65Zn2+ or 109Cd2+. After purified TFIIIA was cleaved with cyanogen bromide, 65Zn2+, 109Cd2+, and 63Ni2+ distinctly labeled the 22 kDa middle fragment; 65Zn2+ and 109Cd2+ also labeled the 11 kDa N-terminal fragment, but did not label the 13 kDa C-terminal fragment. These results are consistent with the notion that the radioligands were bound to finger-loop domains of TFIIIA, which occur in the middle and N-terminal fragments. Based on the abilities of nonradioactive metal ions to compete with 65Zn2+ for binding to TFIIIA on Western blots, the relative affinities of the metals for TFIIIA were ranked as follows: Zn2+ = Cu2+ greater than or equal to Hg2+ greater than Cd2+ greater than Co2+ greater than or equal to Ni2+. Even at a 1000-fold molar excess, Mn2+ did not compete with 65Zn2+ for binding to TFIIIA. Probing Western blots with the radiolabeled metal ions greatly facilitates the detection, isolation, and quantitation of TFIIIA and p43.  相似文献   

10.
11.
Reuber rat hepatoma cells (R-Y121B) cultured at 0.5% serum accumulated apoalkaline phosphatase in intact cells. When R-Y121B cells were cultured in the presence of bovine serum albumin, alkaline phosphatase activity increased in the cells, and the associated increase in enzyme activity differed amongst bovine serum albumin preparations. The treatment of bovine serum albumin with activated charcoal not only enhanced the effect of serum albumin on alkaline phosphatase activity, but also cancelled the differences due to different preparations of serum albumin. In contrast, no effect from serum albumin was observed in the increase of alkaline phosphatase activity in R-Y121B cell homogenates incubated at 37 degrees C. The activated-charcoal treatment of bovine serum albumin increased the amount of Zn2+ bound to the protein. When R-Y121B cells were cultured with bovine serum albumin, the concentration of Zn2+ in the cytosol fraction slightly increased. However, the effect of serum albumin on Zn2+ concentration in the cytosol fractions was independent of charcoal treatment. It was concluded that serum albumin with Zn2+ induces the activation of apoalkaline phosphatase due to Zn2+ binding.  相似文献   

12.
The two Ni2+ ions in the urease active site are delivered by the metallochaperone UreE, whose metal binding properties are central to the assembly of this metallocenter. Isothermal titration calorimetry (ITC) has been used to quantify the stoichiometry, affinity, and thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the well-studied C-terminal truncated H144*UreE from Klebsiella aerogenes, Ni2+ binding to the wild-type K. aerogenes UreE protein, and Ni2+ and Zn2+ binding to the wild-type UreE protein from Bacillus pasteurii. The stoichiometries and affinities obtained by ITC are in good agreement with previous equilibrium dialysis results, after differences in pH and buffer competition are considered, but the concentration of H144*UreE was found to have a significant effect on metal binding stoichiometry. While two metal ions bind to the H144*UreE dimer at concentrations <10 microM, three Ni2+ or Cu2+ ions bind to 25 microM dimeric protein with ITC data indicating sequential formation of Ni/Cu(H144*UreE)4 and then (Ni/Cu)2(H144*UreE)4, or Ni/Cu(H144*UreE)2, followed by the binding of four additional metal ions per tetramer, or two per dimer. The thermodynamics indicate that the latter two metal ions bind at sites corresponding to the two binding sites observed at lower protein concentrations. Ni2+ binding to UreE from K. aerogenes is an enthalpically favored process but an entropically driven process for the B. pasteurii protein, indicating chemically different Ni2+ coordination to the two proteins. A relatively small negative value of DeltaCp is associated with Ni2+ and Cu2+ binding to H144*UreE at low protein concentrations, consistent with binding to surface sites and small changes in the protein structure.  相似文献   

13.
14.
Prekallikrein (PK) activation on human umbilical endothelial cells (HUVEC) presumably leads to bradykinin liberation. On HUVEC, PK activation requires the presence of cell-bound high-molecular-weight kininogen (HK) and Zn(2+). We examined the Zn(2+) requirement for HK binding to and the consequences of PK activation on endothelial cells. Optimal HK binding (14 pmol/10(6) HUVEC) is seen with no added Zn(2+) in HEPES-Tyrode buffer containing gelatin versus 16--32 microM added Zn(2+) in the same buffer containing bovine serum albumin. The affinity and number of HK binding sites on HUVEC are a dissociation constant of 9.6 +/- 1.8 nM and a maximal binding of 1.08 +/- 0.26 x 10(7) sites/cell (means +/- SD). PK is activated to kallikrein by an antipain-sensitive mechanism in the presence of HK and Zn(2+) on HUVEC, human microvascular endothelial cells, umbilical artery smooth muscle cells, and bovine pulmonary artery endothelial cells. Simultaneous with kallikrein formation, bradykinin (5.0 or 10.3 pmol/10(6) HUVEC in the absence or presence of lisinopril, respectively) is liberated from cell-bound HK. Liberated bradykinin stimulates the endothelial cell bradykinin B2 receptor to form nitric oxide. Assembly and activation of PK on endothelial cells modulates their physiological activities.  相似文献   

15.
Zinc potentiation of androgen receptor binding to nuclei in vitro   总被引:1,自引:0,他引:1  
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3471-3478
Zn2+ potentiates binding of the 4.5S [3H]dihydrotestosterone-receptor complex to isolated rat prostate Dunning tumor nuclei in vitro when assayed in the presence of 300 microM ZnCl2, 3 mM MgCl2, 0.25 M sucrose, 5 mM mercaptoethanol, 0.15 M KCl, and 50 mM tris(hydroxymethyl)aminomethane, pH 7.5. In the presence of 5 mM mercaptoethanol, the concentration of 50 microM total Zn2+ required to promote half-maximal receptor binding to nuclei corresponds to a free Zn2+ concentration of 50 nM. The receptor-nuclear interaction appears to be selective for Zn2+; other divalent cations when added at a concentration of 1 mM to a buffer containing 5 mM mercaptoethanol are less effective (Ni2+) or have essentially no effect (Ca2+, Mg2+, Mn2+, Co2+, Cu2+, and Cd2+). Zn2+ does not alter the sedimentation rate of the 4.5S [3H]dihydrotestosterone receptor in the presence of mercaptoethanol; however, in the absence of mercaptoethanol, Zn2+ causes the receptor to aggregate. Zn2+-dependent nuclear binding of the 4.5S [3H]dihydrotestosterone receptor is saturable at 1.4 X 10(-13) mol of receptor sites/mg of DNA, corresponding to approximately 1150 sites/nucleus. In the presence of excess nuclei, up to 60% of added receptor is nuclear bound. An apparent binding constant for the receptor-nuclear interaction of 10(13) M-1 was approximated. Pyridoxal 5'-phosphate (less than or equal to 10 mM), but not 0.4 M KCl, inhibits Zn2+-dependent nuclear binding of the [3H]dihydrotestosterone receptor. Up to 66% of nuclear-bound receptor can be extracted in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 10 mM pyridoxal 5'-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In vitro selection was used to isolate five classes of allosteric hammerhead ribozymes that are triggered by binding to certain divalent metal ion effectors. Each of these ribozyme classes are similarly activated by Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+, but their allosteric binding sites reject other divalent metals such as Mg2+, Ca2+ and Sr2+. Through a more comprehensive survey of cations, it was determined that some metal ions (Be2+, Fe3+, Al3+, Ru2+ and Dy2+) are extraordinarily disruptive to the RNA structure and function. Two classes of RNAs examined in greater detail make use of conserved nucleotides within the large internal bulges to form critical structures for allosteric function. One of these classes exhibits a metal-dependent increase in rate constant that indicates a requirement for the binding of two cation effectors. Additional findings suggest that, although complex allosteric functions can be exhibited by small RNAs, larger RNA molecules will probably be required to form binding pockets that are uniquely selective for individual cation effectors.  相似文献   

17.
Zn(2+) and Co(2+) ions are known to promote human growth hormone reversible dimerization. In these studies, dimerization was also shown to be initiated by nine other metal ions: Cd(2+), Hg(2+), Cu(2+), Ag+, Au(3+), Au+, Pd(2+), Ni(2+), and Pt(4+). In some cases (Hg(2+), Ag(+), Au(3+), and Ni(2+)) formation of higher oligomers also took place. In addition further detailed investigation of dimerization in the presence of Zn(2+) ions was carried out.  相似文献   

18.
The 134 amino acid DNase domain of colicin E9 contains a zinc-finger-like HNH motif that binds divalent transition metal ions. We have used 1D 1H and 2D 1H-15N NMR methods to characterise the binding of Co2+, Ni2+ and Zn2+ to this protein. Data for the Co2+-substituted and Ni2+-substituted proteins show that the metal ion is coordinated by three histidine residues; and the NMR characteristics of the Ni2+-substituted protein show that two of the histidines are coordinated through their N(epsilon2) atoms and one via its N(delta1). Furthermore, the NMR spectrum of the Ni2+-substituted protein is perturbed by the presence of phosphate, consistent with an X-ray structure showing that phosphate is coordinated to bound Ni2+, and by a change in pH, consistent with an ionisable group at the metal centre with a pKa of 7.9. Binding of an inhibitor protein to the DNase does not perturb the resonances of the metal site, suggesting there is no substantial conformation change of the DNase HNH motif on inhibitor binding. 1H-15N NMR data for the Zn2+-substituted DNase show that this protein, like the metal-free DNase, exists as two conformers with different 1H-15N correlation NMR spectra, and that the binding of Zn2+ does not significantly perturb the spectra, and hence structures, of these conformers beyond the HNH motif region.  相似文献   

19.
We have utilized iminodiacetate (IDA) gels with immobilized Zn2+, Cu2+ and Ni2+ ions to evaluate the metal binding properties of uterine estrogen receptor proteins. Soluble (cytosol) receptors labeled with [3H]estradiol were analyzed by immobilized metal affinity chromatography (IMAC) before as well as after (1) 3 M urea-induced transformation to the DNA-binding form, and (2) limited trypsin digestion to separate the steroid- and DNA-binding domains. Imidazole (2-200 mM) affinity elution and pH-dependent (pH 7-3.6) elution techniques were both evaluated and found to resolve several receptor isoforms differentially in both the presence and absence of 3 M urea. Individual receptor forms exhibited various affinities for immobilized Zn2+, Cu2+ and Ni2+ ions, but all intact receptor forms were strongly adsorbed to each of the immobilized metals (Ni2+ greater than Cu2+ much greater than Zn2+) at neutral pH. Generally, similar results were obtained with IDA-Cu2+ and IDA-Ni2+ in the absence of urea. Receptors were tightly bound and not eluted before 100 mM imidazole or pH 3.6. Different results were obtained using IDA-Zn2+; at least four receptor isoforms were resolved on IDA-Zn2+. Receptor-metal interaction heterogeneity and affinity for IDA-Zn2+ and IDA-Cu2+, but not IDA-Ni2+, were substantially decreased in the presence of 3 M urea. The receptor isoforms identified and separated by IDA-Zn2+ chromatography were not separable using high-performance size-exclusion chromatography, density gradient centrifugation, chromatofocusing or DNA-affinity chromatography. The affinity of trypsin-generated (mero)receptor forms for each of the immobilized metals was decreased relative to that of intact receptor. High-affinity metal-binding sites were mapped to the DNA-binding domain, but at least one of the metal-binding sites is located on the steroid-binding domain. Recovery of all receptor forms from the immobilized metal ion columns was routinely above 90%. These results demonstrate the differential utility of various immobilized metals to characterize and separate individual receptor isoforms and domain structures. Receptor-metal interactions warrant further investigation to establish their effects on receptor structure/function relationships. In addition to the biological implications, recognition of estrogen receptor proteins as metal-binding proteins suggests new and potentially powerful receptor immobilization and purification regimes previously unexplored by those in this field.  相似文献   

20.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号