首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effects of divalent cations (Zn2+, Cd2+, Ca2+, Mg2+) on the cytosol androgen receptor were determined by sedimentation into sucrose gradients. At low ionic strength (25 mM KCl, 50 mM Tris, pH 7.4), Zn2+ (200 microM total, which calculates to 130 nM free Zn2+ in 10 mM mercaptoethanol) causes a shift in the sedimentation coefficient of the rat Dunning prostate tumor (R3327H) cytosol receptor and rat ventral prostate cytosol receptor from 7.5 +/- 0.3 S to 8.6 +/- 0.3 S. Zn2+ stabilizes the 8.6 S receptor form in salt concentrations up to 0.15 M KCl in 50 mM Tris, pH 7.2. In low ionic strength gradients containing Ca2+ (greater than or equal to 200 microM) or Mg2+ (greater than or equal to 1 mM), the receptor sediments as 4.7 +/- 0.3 S. The dissociating effects of Ca2+ and Mg2+ can be fully reversed by sedimentation into gradients containing Zn2+ (200 microM total) or Cd2+ (10 microM total). In the presence of Zn2+ (200 microM total), Ca2+ (10 microM to 3 mM) converts the receptor to an intermediate form with sedimentation coefficient 6.2 +/- 0.2 S, Stokes radius 73 A, and apparent Mr approximately 203,000. The potentiating effect of Zn2+ on formation of the 8.6 S receptor (in the absence of Ca2+) and the 6.2 S receptor (in the presence of Ca2+) requires both the 4.5 S receptor and the 8 S androgen receptor-promoting factor. Sodium molybdate stabilizes the untransformed cytosol receptor but, unlike Zn2+, does not promote reconstitution of the 8.6 S receptor from its partially purified components. These results indicate that divalent cations alter the molecular size of the androgen receptor in vitro and thus may have a role in altering the state of transformation of the receptor.  相似文献   

3.
H LeVine  J L Su  N E Sahyoun 《Biochemistry》1988,27(17):6612-6617
A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca2+ (EC50 = 20 microM) for the interaction. Other divalent cations such as Zn2+, Mn2+, Cd2+, Co2+, and Ni2+ will substitute for Ca2+, while Mg2+ and Ba2+ will not. The antibody reacts with both the alpha- and beta-subunits on Western blots in a similar Ca2+-dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of 125I Bolton-Hunter-labeled kinase with unlabeled enzyme. A variety of other proteins including tubulin do not compete for antibody binding. The Mr 30,000 catalytic fragment obtained by proteolysis of either the soluble or the cytoskeletal form of the kinase fails to react with the antibody. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the Kmapp for calmodulin and an increase in the Vmax for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the Mr 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca2+-dependent conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The interaction of Mg2+, Ca2+, Zn2+, and Cd2+ with calf thymus DNA has been investigated by Raman spectroscopy. These spectra reveal that all of these ions, and particularly Zn2+, bind to phosphate groups of DNA, causing a slight structural change in the polynucleotide at very small metal: DNA (P) concentration ratio (ca. 1:30). This results in increased base-stacking interactions, with negligible change of the B conformation of DNA. Contrary to Zn2+ and Cd2+, which interact extensively with the nucleic bases (particularly at the N7 position of guanine), the alkaline-earth metal ions are bound almost exclusively to the phosphate groups. The affinity of both the Zn2+ and Cd2+ ions for G.C base pairs is comparable, but the Cd2+ ions interact more extensively with A.T pairs than Zn2+ ions. Interstrand cross-linking through the N3 atom of cytosine is suggested in the presence of Zn2+, but not Cd2+.  相似文献   

5.
6.
Cadmium uptake in Escherichia coli K-12.   总被引:5,自引:3,他引:2       下载免费PDF全文
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli.  相似文献   

7.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

8.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

9.
Initial rate kinetics of polysaccharide formation indicate that Zn2+, Ni2+, and Co2+ inhibit dextransucrase [sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5] by binding to two types of metal ion sites. One type consists of a single site and has a low apparent affinity for Ca2+. At the remaining site(s), Ca2+ has a much higher apparent affinity than Zn2+, Ni2+, or Co2+, and prevents inhibition by these metal ions. These findings are consistent with a two-site model previously proposed from studies with Ca2+ and EDTA. Initial rate kinetics also show that Tris is competitive with sucrose, but that, unlike Zn2+, Tris does not bind with significant affinity to a second site. This argues that there is a site which is both the sucrose binding site and a general cation site.  相似文献   

10.
The translocation of manganese (Mn), nickel (Ni), cobalt (Co), zinc (Zn) and cadmium (Cd) in white lupin (Lupinus albus cv. Amiga) was compared considering root-to-shoot transport, and redistribution in the root system and in the shoot, as well as the content at different stages of cluster roots and in other roots. To investigate the redistribution of these heavy metals, lupin plants were labelled via the root for 24 h with radionuclides and subsequently grown hydroponically for several weeks. 54Mn, 63Ni and 65Zn were transported via the xylem to the shoot. 63Ni and 65Zn were redistributed afterwards via the phloem from older to younger leaves, while 54Mn remained in the oldest leaves. A strong retention in the root was observed for 57Co and 109Cd. Cluster roots contained higher concentrations of all heavy metals than noncluster roots. Concentrations were generally higher at the beginning of cluster root development (juvenile and immature stages). Mature cluster roots also contained high levels of 54Mn and 57Co, but only reduced concentrations of 63Ni, 65Zn and 109Cd.  相似文献   

11.
The green alga Scenedesmus obliquus was incubated with various heavy metals (Cd2+, Zn2+, Mn2+, Ni2+) in presence/absence of selenium. S. obliquus exhibited higher rates of growth and some metabolic activities in cultures containing 0.1 mM Se than those containing only the heavy metals. The positive effect of Se was found in presence of Cd2+ while that in the case of presence of Ni2+ was less pronounced.  相似文献   

12.
The sorption of Cu2+, Cd2+, Pb2+, and Zn2+ by a dried green macroalga Caulerpa lentillifera was investigated. The removal efficiency increased with pH. The analysis with FT-IR indicated that possible functional groups involved in metal sorption by this alga were O-H bending, N-H bending, N-H stretching, C-N stretching, C-O, SO stretching, and S-O stretching. The sorption of all metal ions rapidly reached equilibrium within 20min. The sorption kinetics of these metals were governed by external mass transfer and intraparticle diffusion processes. The sorption isotherm followed the Langmuir isotherm where the maximum sorption capacities was Pb2+>Cu2+>Cd2+>Zn2+.  相似文献   

13.
Starved cells of Candida utilis accumulated Zn2+ by two different processes. The first was a rapid, energy- and temperature-independent system that probably represented binding to the cell surface. The cells also possessed an energy-, pH-, and temperature-dependent system that was capable of accumulating much greater quantities of the cation than the binding process. The energy-dependent system was inhibited by KCN, Na2HAsO4, m-chlorophenyl carbonylcyanide hydrazone, N-ethylmaleimide, EDTA and diethylenetriaminepenta-acetic acid. The system was specific inasmuch as Ca2+, Cr3+, Mn2+, Co2+ or Cu2+ did not compete with, inhibit, or enhance the process, Zn2+ uptake was inhibited by Cd2+. The system exhibited saturation kinetics with a half-saturation value of 1.3 muM and a maximum rate of 0.21 (nmol Zn2+) min(-1) (mg dry wt(-1)) at 30 degrees C. Zn2+ uptake required intact membranes since only the binding process was observed in the presence of nystatin, toluene, or sodium dodecyl sulphate. Cells did not exchange recently accumulated toluene, or sodium dodecyl sulphate. Cells did not exchange recently accumulated 65Zn following the addition of a large excess of non-radioactive Zn2+. Similarly, cells pre-loaded with 65Zn did not lose the cation during starvation, and efflux did not occur when glucose and exogenous Zn2+ were supplied after the starvation period. Efflux was only observed after the addition of toluene or nystatin, or when cells were heated to 100 degrees C. Cells fed a large quantity of Zn2+ contained a protein fraction resembling animal cell metallothionein. In batch culture, cells of C. utilis accumulated Zn2+ only during the lag phase and the latter half of the exponential-growth phase.  相似文献   

14.
The specific uptake of 0.3 microM (109)Cd by the TC7 clone of the human enterocytic-like Caco-2 cells increased 4-fold as the pH(out) was lowered from 7.5 to 5.5; the stimulatory effect of acidic media being more pronounced when the level of the free ion (109)Cd(2+), relative to total (109)Cd, was increased. The initial uptake rate was 12-fold higher under conditions, optimizing (109)Cd(2+) accumulation over that of (109)CdCl(2-n)(n) (NO(-)(3)/pH(out) 5.5); a saturable system of transport has been characterized (K(m) = 1.1 +/- 0.1 microM, V(max) = 87 +/- 3 pmol/3 min/mg protein). An excess of Fe(2+) failed to affect (109)Cd uptake when the pH(out) was 7.4, whereas a strong inhibition was observed under NO(-)(3)/pH(out) 5.5 conditions. In contrast, the maximal inhibitory effect of Zn(2+) was observed under Cl(-)/pH(out) 7.4 conditions. This results strongly suggest that Fe(2+) may compete with Cd(2+) for Nramp2, whereas Zn and CdCl(2-n)(n) compete for another system of transport that has yet to be identified.  相似文献   

15.
Na Feng  Jiuru Lu  Yunhua He  Jianxiu Du 《Luminescence》2005,20(4-5):266-270
A new chemiluminescence (CL) reaction was observed when Ni2+, Mg2+, Cd2+ or Zn2+ was injected into the reaction mixture after the finish of the CL reaction of alkaline luminol and potassium ferricyanide. This reaction is described as a post-chemiluminescence (PCL) reaction. The possible mechanism for the PCL was proposed based on studies of the CL kinetic characteristic and the CL spectra. The experimental conditions of the CL reactions were optimized and the feasibility of using the reaction to analyse these metal ions was evaluated. The PCL reaction method operates in the ranges: 1 x 10(-7)-8 x 10(-6) g/L Ni2+; 3 x 10(-6)-2 x 10(-4) g/L Mg2+; 8 x 10(-7)-1 x 10(-4) g/L Cd2+; and 2 x 10(-4)-2 x 10(-3) g/L Zn2+, with detection limits of 4 x 10(-8) g/mL, 1 x 10(-6) g/mL, 3 x 10(-7) g/mL, 8 x 10(-5) g/mL, respectively.  相似文献   

16.
Resistance to cadmium, cobalt, zinc, and nickel in microbes.   总被引:23,自引:0,他引:23  
D H Nies 《Plasmid》1992,27(1):17-28
The divalent cations of cobalt, zinc, and nickel are essential nutrients for bacteria, required as trace elements at nanomolar concentrations. However, at micro- or millimolar concentrations, Co2+, Zn2+, and Ni2+ (and "bad ions" without nutritional roles such as Cd2+) are toxic. These cations are transported into the cell by constitutively expressed divalent cation uptake systems of broad specificity, i.e., basically Mg2+ transport systems. Therefore, in case of a heavy metal stress, uptake of the toxic ions cannot be reduced by a simple down-regulation of the transport activity. As a response to the resulting metal toxicity, metal resistance determinants evolved which are mostly plasmid-encoded in bacteria. In contrast to that of the cation Hg2+, chemical reduction of Co2+, Zn2+, Ni2+, and Cd2+ by the cell is not possible or sensible. Therefore, other than mutations limiting the ion range of the uptake system, only two basic mechanisms of resistance to these ions are possible (and were developed by evolution): intracellular complexation of the toxic metal ion is mainly used in eucaryotes; the cadmium-binding components are phytochelatins in plant and yeast cells and metallothioneins in animals, plants, and yeasts. In contrast, reduced accumulation based on an active efflux of the cation is the primary mechanism developed in procaryotes and perhaps in Saccharomyces cerevisiae. All bacterial cation efflux systems characterized to date are plasmid-encoded and inducible but differ in energy-coupling and in the number and types of proteins involved in metal transport and in regulation. In the gram-positive multiple-metal-resistant bacterium Staphylococcus aureus, Cd2+ (and probably Zn2+) efflux is catalyzed by the membrane-bound CadA protein, a P-type ATPase. However, a second protein (CadC) is required for full resistance and a third one (CadR) is hypothesized for regulation of the resistance determinant. The czc determinant from the gram-negative multiple-metal-resistant bacterium Alcaligenes eutrophus encodes proteins required for Co2+, Zn2+, and Cd2+ efflux (CzcA, CzcB, and CzcC) and regulation of the czc determinant (CzcD). In the current working model CzcA works as a cation-proton antiporter, CzcB as a cation-binding subunit, and CzcC as a modifier protein required to change the substrate specificity of the system from Zn2+ only to Co2+, Zn2+, and Cd2+.  相似文献   

17.
The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+ and 2'AMP2-, 3'AMP2- or 5'AMP2- were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3; 25 degrees C). The experimental conditions were carefully selected such that self-association of the nucleotides and their complexes is negligibly small; i.e. it was made certain that the properties of the monomeric divalent-metal-ion--AMP [M(AMP)] complexes were studied. Based on recent measurements with simple phosphate monoesters, R-MP2- where R is a non-coordinating residue [Massoud, S. S. & Sigel, H. (1988) Inorg. Chem. 27, 1447-1453], it is shown that all the M(AMP) complexes of the alkaline earth ions, with the possible exception of Mg(5'AMP), have exactly the stability expected for a sole-phosphate coordination of the metal ion. The same property is revealed for the complexes with Mn2+, Co2+, Zn2+ or Cd2+ and 3'AMP2-; in case of Ni(3'AMP) and Cu(3'AMP) a slight stability increase just at the edge of the experimental-error limits is indicated. This slight stability increase is attributed to the formation of a macrochelate (possibly with N-3); in fact, additional information confirms macrochelation for Cu(3'AMP). About 45% of Cu(2'AMP) exists in aqueous solution as a macrochelate (probably involving N-3); the other M(2'AMP) complexes (M2+ = Mn2+, Co2+, Ni2+, Zn2+, Cd2+) form (if at all) only traces of a base-backbound species. Most pronounced is macrochelate formation with 5'AMP2-: all mentioned 3d ions and Zn2+ or Cd2+ form to some extent macrochelates via N-7 (the structures of these closed species are indicated). In case of M(5'AMP) the base-binding site is certain: replacement of N-7 by a CH unit (tubercidin 5'-monophosphate) eliminates any increased complex stability, whereas formation of the 1,N6-etheno bridge to form 1,N6-ethenoadenosine 5'-monophosphate results in the phenanthroline-like N-6,N-7 site which facilitates macrochelation significantly.  相似文献   

18.
Distribution of some bivalent cations (Ca2+, Mg2+, Zn2+) in histones isolated from healthy mice liver and ascitic hepatoma 22A cells has been investigated by atomic-absorption analysis. It has been shown that the content of these cations is higher in normal and diseased H3, H2B and H1 fractions and lower--in H2A; however, in the H4 fraction these metals are not detected. A significant increase of Ca2+, Mg2+ and Zn2+ levels has been established in ascitic H3, H2B and H1 fractions. An increase of bivalent cations (Ca2+, Mg2+, Zn2+) content in some histone fractions apparently is bound with the changes of histone--histone and histone--DNA interactions.  相似文献   

19.
The 25 000-Da tryptic fragment from rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase was subjected to cyanogen bromide digestion, and the four fragments isolated. Only the 13 000-Da fragment induced ionophorous activity in planar thin lipid membranes made with 5:1 (w/w) phosphatidylcholine/cholesterol in decane. The membranes became cation selective, with a selectivity sequence among divalent of Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. This is different from that of the 25 000-Da fragment (A.E. Shamoo, 1978, J. Memb. Biol. 43, 227-242), it's 'parent' 55 000-Da fragment, and the intact enzyme, all of which have the same selectivity sequence. The inhibitory effects of Hg2+, Cd2+ and Zn2+ were also examined. All were inhibitory, with Zn2+ being the most effective of these. The heavy-metal-induced inhibition of Ca2+ conductance could be reversed by selective chelation of the heavy metals by EDTA. From changes in the selectivity as well as changes in heavy-metal-induced inhibition behavior, we conclude that the ion transport site of the 13 000-Da fragment may not be the same site as that of the parent fragment. It is either a different site altogether or has been physically modified by peptide cleavage.  相似文献   

20.
Cd2+ and Mn2+ accumulation was studied with wild-type Bacillus subtilis 168 and a Cd2+-resistant mutant. After 5 min of incubation in the presence of 0.1 microM 109Cd2+ or 54Mn2+, both strains accumulated comparable amounts of 54Mn2+, while the sensitive cells accumulated three times more 109Cd2+ than the Cd2+-resistant cells did. Both 54Mn2+ and 109Cd2+ uptake, which apparently occur by the same transport system, demonstrated cation specificity; 20 microM Mn2+ or Cd2+ (but not Zn2+) inhibited the uptake of 0.1 microM 109Cd2+ or 54Mn2+. 54Mn2+ and 109Cd2+ uptake was energy dependent and temperature sensitive, but 109Cd2+ uptake in the Cd2+-resistant strain was only partially inhibited by an uncoupler or by a decrease in temperature. 109Cd2+ uptake in the sensitive strain followed Michaelis-Menten kinetics with a Km of 1.8 microM Cd2+ and a Vmax of 1.5 mumol/min X g (dry weight); 109Cd2+ uptake in the Cd2+-resistant strain was not saturable. The apparent Km value for the saturable component of 109Cd2+ uptake by the Cd2+-resistant strain was very similar to that of the sensitive strain, but the Vmax was 25 times lower than the Vmax for the sensitive strain. The Km and Vmax for 54Mn2+ uptake by both strains were very similar. Cd2+ inhibition of 54Mn2+ uptake had an apparent Ki of 3.4 and 21.5 microM Cd2+ for the sensitive and Cd2+-resistant strains, respectively. Mn2+ had an apparent Ki of 1.2 microM Mn2+ for inhibition of 109Cd2+ uptake by the sensitive strain, but the Cd2+-resistant strain had no defined Ki value for inhibition of Cd2+ uptake by Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号