首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
花色性状是甘蓝的一个重要性状,在吸引和指示传粉者、保护花器官、维持花组织能量平衡、测定品种异交率及纯度、检测性状转移等方面有重要作用。为了鉴定控制和影响甘蓝花色的遗传位点和候选基因,本研究利用芥蓝(白花)与野生甘蓝(黄花)构建了F2分离群体,并分别利用基于分子标记遗传连锁图谱和基于SNP芯片分析的QTL扫描技术,对甘蓝花色性状进行QTL定位。本研究结论如下:甘蓝花色性状由C03染色体上一个部分显性主效QTL位点控制,并受到C02上一个微效加性QTL的影响;主效QTL候选基因BoCCD4编码区778~780 bp处3个碱基的插入极可能导致BoCCD4功能丧失,从而呈现黄色表型。本研究确认了控制甘蓝白花性状的主效QTL位置,鉴定到了候选基因并发现了与文献报道不同的新变异位点,为进一步了解芸薹属物种花色的遗传和变异提供了新的数据。  相似文献   

2.
人工合成甘蓝型油菜中花色与芥酸含量的遗传连锁分析   总被引:9,自引:1,他引:8  
利用人工合成的甘蓝型油菜品系.No.2127-17(白花、有芥酸)与加拿大双低甘蓝型油菜品种Quantum(黄花、低芥酸)配制杂交组合。对亲本、F1、BC1、F2和DH(doubled haploid)5个世代的花色及芥酸含量进行分析,结果表明:花色受单基因控制,且白花对黄花为显性;芥酸含量仅表现出一对基因的差异且具有加性效应的遗传模式。花色和芥酸含量的连锁分析表明:白花与高芥酸紧密连锁.在DH群体中重组频率为5.8%。采用集团分离分析法(Bulked Segregant Analysis,BSA),从685条10个碱基的随机引物筛选到一个与黄花和低芥酸含量紧密连锁的RAPD标记S92-1400。在遗传图谱上黄花基因和低芥酸基因距离S92-1400标记的图距分别为2.2cM和5.4cM。  相似文献   

3.
林桂荣  李宝江  魏毓棠 《遗传》2006,28(6):713-716
以田间西安绿茄突变产生的白花茄子筛选出的优良株系和原亲本群体为试材,研究了茄子的花色遗传及其对植株、花朵、果实等相关性状的影响。结果表明,茄子的花色由一对完全显性的基因Col—col控制,紫花对白花完全显性。遗传稳定的紫花株与白花株杂交,F1代表现为紫花,F2代群体的紫花和白花植株呈3:1分离;F1代植株与白花株交配,后代呈1:1分离。白花株系与紫花株系相比,植株生长旺盛,植株高、株幅大,每花的雄蕊数多,花粉粒大、花粉量少,果内种子数少、果实大、产量高。白花变异可直接做栽培资源利用,还可作为育种材料或用做茄子杂交种纯度鉴定的标记性状。  相似文献   

4.
航天诱导凤仙花SP4代三种不同花色突变系比较   总被引:1,自引:0,他引:1  
以航天诱变凤仙花院3株系SP4代中的三种不同花色(粉花、红花、紫花)突变系为材料,对其雄配子体染色体数目、排列方式和花粉活力进行比较分析,并观察了四分孢子时期的分裂情况.将观察结果同SP1、SP2和SP3的观察结果进行跟踪比较.结果发现SP4代粉花和红花突变系的小孢子染色体数目趋向正常.紫花突变系花粉染色体数目正常比例仅为2.88%,平均为10.46条,并且紫色花突变系出现多分孢子、畸形花粉和花粉染色体排列不规则现象.TIC染色统计分析发现,紫花突变系花粉活力较低,而粉花及红花突变系的花粉活力较高.研究结果表明红花和粉花突变系已经趋于稳定,但紫花突变系远未达到稳定.本研究为凤仙花新品种(系)的选育提供了参考.  相似文献   

5.
以航天诱变凤仙花院3 株系SP4 代中的三种不同花色(粉花、红花、紫花) 突变系为材料, 对其雄配子体染色体数目、排列方式和花粉活力进行比较分析, 并观察了四分孢子时期的分裂情况。将观察结果同SP1 、SP2 和SP3 的观察结果进行跟踪比较。结果发现SP4 代粉花和红花突变系的小孢子染色体数目趋向正常。紫花突变系花粉染色体数目正常比例仅为2. 88% , 平均为10.46 条, 并且紫色花突变系出现多分孢子、畸形花粉和花粉染色体排列不规则现象。TTC 染色统计分析发现, 紫花突变系花粉活力较低, 而粉花及红花突变系的花粉活力较高。研究结果表明红花和粉花突变系已经趋于稳定, 但紫花突变系远未达到稳定。本研究为凤仙花新品种(系) 的选育提供了参考。  相似文献   

6.
为了掌握欧报春各花色遗传规律服务于良种生产,通过对欧报春各色花进行色素吸收光谱和薄层层析分析,进行不同花色杂交研究,分析了欧报春各色花所含色素类型及各花色遗传规律。结果显示欧报春群体含多种花色素,单株也可含有多种花色素,形成多变的粉色、红色及蓝色花。黄色深浅主要由类胡萝卜素含量决定。白色对粉色及黄色为隐性遗传,黄色、粉色为显性遗传并有数量遗传特征,黄色与粉色独立遗传。蓝色为多基因控制的隐性遗传,并具有数量遗传特征。  相似文献   

7.
曹建军  梁宗锁 《植物研究》2008,28(4):426-432
为了掌握欧报春各花色遗传规律服务于良种生产,通过对欧报春各色花进行色素吸收光谱和薄层层析分析,进行不同花色杂交研究,分析了欧报春各色花所含色素类型及各花色遗传规律。结果显示欧报春群体含多种花色素,单株也可含有多种花色素,形成多变的粉色、红色及蓝色花。黄色深浅主要由类胡萝卜素含量决定。白色对粉色及黄色为隐性遗传,黄色、粉色为显性遗传并有数量遗传特征,黄色与粉色独立遗传。蓝色为多基因控制的隐性遗传,并具有数量遗传特征。  相似文献   

8.
答 :有些教科书将豌豆种皮的灰褐色与白色这对相对性状包括在孟德尔豌豆杂交试验用的 7对相对性状内 ,但另一些教科书则将种皮色换成花的颜色 (红花与白花 ) ,其实这并不矛盾。理由如下 :为方便假定控制豌豆花色的是 C- c基因座 ,并且已知该基因座位于第 1对染色体上 ,通过观察知 C显性基因在控制红花的同时 ,也控制种皮的灰褐色 ,此外还控制叶腋的有色斑。这就是所谓“一因多效”现象 ,即 1对基因可影响多个性状发育的现象。孟德尔的豌豆杂交实验所用的7对相对性状中到底有没有种皮性状(灰色、白色)?…  相似文献   

9.
以OguraCMS紫菜苔×萝卜杂种F1(AR ,2n =19)为母本 ,以甘蓝型油菜 (AACC ,2n =38)为父本进行杂交 ,获得了 4棵杂种植株。其中 1株 (PRN 1)的花色为嵌合体 ,该植株上的花多为黄色 ,但是也有乳白色花 ,另外还有 1朵花甚至 1个花瓣上同时具有黄色和白色区域 ,其余 3株 (PRN 2、 3、 4 )都开白花。PRN 4的花药开花前退化 ,其余 3株都可以看到 3~ 6枚花药 ,能够产生部分花粉 ,但是PRN 2的花粉不能被I2 KI溶液染色。PRN 2具有 4个蜜腺 ,PRN 1和PRN 3具有 2个蜜腺 ,PRN 4无可见蜜腺。在低温下PRN 2叶色正常 ,其余 3株幼叶表现不同程度缺绿。PRN 1的染色体数目为 2n =38,染色体平均配对构型为 14 6 7Ⅰ +10 0 7Ⅱ +1 0 6Ⅲ ,其染色体组构成可能是AACR ;PRN 2的染色体数目为 2n =35 ,染色体平均配对构型为 13 89Ⅰ +8 33Ⅱ +1 33Ⅲ +0 11Ⅳ ,PRN 3的染色体数目为2n =33,染色体平均配对构型为 14 0 0Ⅰ +7 82Ⅱ +1 0 0Ⅲ +0 0 9Ⅳ。PRN 4的染色体数目未能确定。与甘蓝型油菜回交后PRN 1~ 3植株各自产生了一定数量的种子 ,而PRN 4则未产生种子。对这些杂种及其后代的遗传及育种意义进行了讨论  相似文献   

10.
以红色、红心白边、粉红、玫红、黄色、黄心红边、浅粉和白色8种花色丽的格海棠花瓣为试验材料,采用目视测色法、RHSCC比色法和色差仪测定花瓣表型,通过组织切片法观察花瓣色素细胞的显微结构和分布特点,采用双光束紫外-可见光分光光度计和高效液相色谱-电喷雾离子化-质谱连用技术(HPLC-ESI-MS)测定分析花瓣中花青素苷的成分和含量,为探讨丽格海棠花色的呈色机理和花色育种提供参考。结果显示:(1)丽格海棠的明度L*随花瓣颜色变深而降低,红度a*则表现出相反趋势,红度(a*)和彩度(C*)值与明度(L*)呈显著负相关关系,且a*和C*是影响L*的主要因素。(2)红花品种花瓣色素主要分布于上表皮细胞和海绵组织中;红白花品种花瓣色素主要分布于上下表皮中,且下表皮积累量更多;粉色花和玫红花品种花瓣色素主要分布于上下表皮细胞;黄红花和粉白色花品种花瓣上表皮中含有少量色素,而黄花和白花品种花瓣几乎没有色素积累。各花色丽格海棠花瓣上表皮细胞均为圆锥形,且红花和红白花品种锥形化程度最高,它们花瓣下表皮细胞均呈扁平的长方形。(3)8个丽格海棠品种花瓣中共检测出15种花青素苷,其中10种为芍药素苷,3种为矢车菊素苷,1种为锦葵素苷,1种为飞燕草素苷,酰化花青素苷占多数;红花品种花瓣中总花青素苷含量最高,玫红花品种次之,黄花和白花品种中未检出;除粉红花品种外,其余含花青素苷的品种中芍药素苷含量最高,均占总花青素苷含量的50%以上,是花瓣的主要呈色物质。(4)丽格海棠花瓣中总花青素苷含量与其红度(a*)、彩度(C*)值呈正相关关系、与其L*值呈负相关关系。研究表明,花青素苷的积累有利于丽格海棠花瓣红色化,并影响其花瓣彩度(C*)及明度(L*);色素分布细胞数量和上表皮细胞锥形化明显影响花瓣呈色,且花瓣主要的呈色物质为芍药素苷,酰基化修饰可能影响其明度。  相似文献   

11.
菊花不同花色品种中花青素苷代谢分析   总被引:2,自引:0,他引:2  
应用高效液相色谱和多级质谱联用技术(HPLC-ESI-MSn),分析菊花(Chrysanthemum×morifolium)白色、粉色、红色、紫色、红紫色和墨色6个色系共计82个品种中花青素苷合成过程的中间产物和最终产物,发现从白色、粉色、红色、紫色、红紫色到墨色花青素苷含量快速增加,分别为4.68、111.60、366.89、543.56、1220.36和2674.95μg·g-1,不同色系间花青素苷的含量差异显著(P〈0.01),花青素苷含量越高花色越深;墨色菊花品种中总类黄酮含量显著高于其它花色品种(P〈0.01),其它不同色系间总类黄酮含量差异不显著(P〉0.05);随着菊花花色变深,从柚皮素分支到圣草酚的代谢流,以及从圣草酚分支到矢车菊素苷的代谢流比例增加。花青素苷成分分析发现:菊花中只含有矢车菊素苷类化合物。根据花青素苷代谢成分分析结果绘制了菊花中花青素苷代谢路径图,即在菊花类黄酮代谢途径中只存在矢车菊素苷代谢分支途径;菊花不同色系在柚皮素和圣草酚2个关键代谢分支点上向不同方向代谢流的分配比例不同,造成花青素苷产物含量不同,导致不同花色。以上研究结果为菊花花色改良的分子育种提供了理论依据。  相似文献   

12.
对红色、黄色、粉紫色和白色菊花品种不同开放度的花序舌状花中CHS、CHI、DFR、F3H、F3′H和3GT基因的表达量进行了相对定量分析。结果表显示:6个基因的表达因不同花色、不同发育阶段而异。‘钟山红鹰’(红色)中各基因的表达量均较高,且均在Ⅱ(松蕾期)或Ⅲ(半开期)期达到峰值,其中DFR、3GT基因的表达量远高于其他花色品种。‘金陵娇黄’(黄色)中CHS、CHI基因表达量较高,且Ⅰ(紧蕾期)、Ⅱ期表达量高于Ⅲ、Ⅳ(盛开期)期;3GT、DFR基因表达量分别高或低于‘金陵笑靥’(粉紫色)品种中相应基因的表达量,但均比红色品种低;F3H在4个品种中表达量最低,F3′H表达量接近或略低于红色或粉紫色品种,且各阶段表达水平较稳定。‘金陵笑靥’中DFR表达量仅次于‘钟山红鹰’,3GT和CHS表达量低于红色与黄色品种。‘钟山雪桂’(白色)中各基因仅有微量表达,除F3H外各基因的表达量明显低于其他花色品种。研究表明,花色素结构基因DFR、3GT是菊花花色素合成的关键基因,DFR很可能是限速关键基因,一定表达水平的CHS、CHI也是菊花花色素合成所必须的,F3H基因与花色素合成不存在直接相关。  相似文献   

13.
菊花不同花色品种中花青素苷代谢分析   总被引:7,自引:0,他引:7  
应用高效液相色谱和多级质谱联用技术(HPLC-ESI-MSn), 分析菊花(Chrysanthemum × morifolium)白色、粉色、红色、紫色、红紫色和墨色6个色系共计82个品种中花青素苷合成过程的中间产物和最终产物, 发现从白色、粉色、红色、紫色、红紫色到墨色花青素苷含量快速增加, 分别为4.68、111.60、366.89、543.56、1 220.36和2 674.95 μg·g–1, 不同色系间花青素苷的含量差异显著(P<0.01), 花青素苷含量越高花色越深; 墨色菊花品种中总类黄酮含量显著高于其它花色品种(P<0.01), 其它不同色系间总类黄酮含量差异不显著(P>0.05); 随着菊花花色变深, 从柚皮素分支到圣草酚的代谢流, 以及从圣草酚分支到矢车菊素苷的代谢流比例增加。花青素苷成分分析发现: 菊花中只含有矢车菊素苷类化合物。根据花青素苷代谢成分分析结果绘制了菊花中花青素苷代谢路径图, 即在菊花类黄酮代谢途径中只存在矢车菊素苷代谢分支途径;菊花不同色系在柚皮素和圣草酚2个关键代谢分支点上向不同方向代谢流的分配比例不同, 造成花青素苷产物含量不同,导致不同花色。以上研究结果为菊花花色改良的分子育种提供了理论依据。  相似文献   

14.
Evolutionary ecologists are fundamentally interested in how species interactions affect evolutionary change. We tested the degree to which plant-pollinator interactions affect the frequency of flower color morphs of Raphanus sativus. Petal color in R. sativus is determined by two independently assorting loci, producing four petal colors (yellow, white, pink, and bronze). We assessed the impact of pollinator discrimination on changes in flower color variation by comparing the frequency of colors produced in the presence (open pollination) versus absence (null pollination) of pollinator discrimination. We also assessed the impact of postpollination and developmental effects on progeny colors using equal pollinations with all four color morphs. Our results from open pollinations found an overrepresentation of yellow progeny in the next generation, when compared with both null pollinations and cumulative ratios based on Hardy-Weinberg and linkage equilibria assumptions. When these results were combined with those from equal pollinations, the overrepresentation of yellow could be attributed to selection from pollinators. Yet, surveys in the field the following year found no flower color frequency changes in the next generation. These results illustrate that flower color microevolution can be driven by both pollinator discrimination and other nonpollinator selective forces acting during the seed-to-adult transition, countering selection imposed by pollinators.  相似文献   

15.
Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array of petal colors among cotton species, with cream, yellow and red colors dominating the color scheme. Genetic and biochemical analyses indicated that both the original cream and red colors and the color changes post-anthesis were related to flavonoid content. The anthocyanin content and the expression of biosynthesis genes were both increased from blooming to one day post-anthesis (DPA) when the flower was withering and undergoing abscission. Our results indicated that the color changes and flavonoid biosynthesis of cotton flowers were precisely controlled and genetically regulated. In addition, flavonol synthase (FLS) genes involved in flavonol biosynthesis showed specific expression at 11 am when the flowers were fully opened. The anthocyanidin reductase (ANR) genes, which are responsible for proanthocyanidins biosynthesis, showed the highest expression at 6 pm on 0 DPA, when the flowers were withered. Light showed primary, moderate and little effects on flavonol, anthocyanin and proanthocyanidin biosynthesis, respectively. Flavonol biosynthesis was in response to light exposure, while anthocyanin biosynthesis was involved in flower color changes. Further expression analysis of flavonoid genes in flowers of wild type and a flavanone 3-hydroxylase (F3H) silenced line showed that the development of cotton flower color was controlled by a complex interaction between genes and light. These results present novel information regarding flavonoids metabolism and flower development.  相似文献   

16.
花色改造基因工程   总被引:10,自引:0,他引:10  
自1987年世界首例成功运用转基因技术改造矮牵牛花色以来,花色改造基因工程技术不断展现它在培育新花色品系上的无穷魅力。介绍了近年来运用基因工程技术成功改造花色的3种主要策略:(1)采用反义RNA及共抑制的方法来改变花颜色的深浅;(2)通过导入新基因产生新奇花色;(3)利用转座子构建特殊表达载体,随机激活花色合成的基因来产生嵌合花色。此外,还对转基因株花色不稳定原因进行了讨论。  相似文献   

17.
瓢虫的趋光性反应研究   总被引:3,自引:0,他引:3  
以六斑月瓢虫Menochilus sexmaculata Fabricius和狭臀瓢虫Coccinella transversalis Fabricius为例,研究了瓢虫对不同光质(波长)的趋光性反应。在室内分别测定了六斑月瓢虫和狭臀瓢虫对5种发光二极管(LED)光波的趋性,以及在田间挂板(佳多)测定了瓢虫对色板的选择趋性。室内测定结果表明,瓢虫对黄色和白色LED光波的选择趋性显著高于与其它颜色;田间挂板试验表明,黄色对瓢虫的诱杀作用最强。综合分析,黄色对瓢虫有强烈的吸引作用,建议在使用黄板进行田间监测和防治时应考虑对天敌瓢虫的诱杀作用。  相似文献   

18.
In the vicinity of Yashiro Island in the Inland Sea of Japan, the solitary ascidian (tunicate) Halocynthia roretzi with tunics of various colors were collected. Samples of these animals were sorted into three groups on the basis of visual observation of tunic color. The red group includes animals with dark-red, light-red, or orange tunics. The pink group includes animals with tunic colors ranging between red and white. The white group includes only animals with completely white tunics. Animals in the white group lacked color internally, with the exception of the hepatopancreas and the gonads in breeding season; the epidermis and gill basket were white. In contrast, animals of both the red group and the pink group were colored internally, with red-orange epidermis and yellow gill basket. Alloreactivity was tested by mixed-hemocyte incubation between different animals belonging to the same color group and between animals belonging to different color groups. Alloreactivity between animals of the white group was 56.3%, between animals of the pink group was 60.0%, and between animals of the red group was 69.3%. The relatively high frequency of compatible combinations among the white animals is discussed.  相似文献   

19.
紫茉莉是我国广泛分布的庭院花卉之一,具有丰富的花色。但不同花色紫茉莉在开花过程中的花色变化规律及其呈色机制还不清楚。以紫红色、黄色和白色紫茉莉为研究对象,分别通过色差仪测定法和紫外-可见分光光度法测定了不同开花时期不同花色紫茉莉花色表型及各类色素含量,探讨了其花色和色素变化规律,揭示其呈色机制。结果表明,从花蕾期到盛开期,紫红色紫茉莉花冠由淡绿色转变为紫红色,明度L*值和色相b*值减小,而色相a*值、色度C*值和色度角h值增大,叶绿素含量逐渐下降,类胡萝卜素、花色素苷和总黄酮含量逐渐升高;黄色紫茉莉花冠由淡绿色转变为黄色,盛开期具有最高的色度C*值、色相a*值和b*值,整个开花过程具有较稳定的叶绿素和总黄酮含量,同时具有较高的类胡萝卜素含量;白色紫茉莉花冠由淡绿色转变为白色,过渡期具有最高的明度L*值、色度C*值、色相a*值和b*值,整个开花过程花色素苷和总黄酮含量较低,但随着开花进程逐渐升高,而类胡萝卜素含量稳定,过渡期总叶绿素含量显著低于其他2个时期。可见,不同花色紫茉莉开花过程中花色变化规律存在差异,而其差异性与其相应的色素成分变化密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号